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CHAPTER 1 Introduction
The basis for the theory on Abstract Normal Form (ANF) began in 
1992 when I was introduced to what is now the second of the ANF 
constructs. This solution solved a problem for a Manufacturing/
Accounting application, and was shared with me by a developer who 
had used the construct to solve a similar business problem for a For-
tune 500 company. Through its most basic implementation, he was 
able to remove the 'run-time' transactional requirements from the 
order entry desk, yet maintain a 'real-time' Inventory, which was my 
goal as well. 

Sometime in 1995, after having expanded on the basic construct to 
solve more complex database problems, I began looking for informa-
tion to expand my knowledge of the subject. As it turned out, there 
was none. In September of 1996 I gave the first presentation on 
"Abstract Normalization" to the International DataEase Users Asso-
ciation conference held in Wilmington Delaware. The response to 
that presentation has led to ongoing requests for further elucidation, 
which ultimately has led to this treatise.
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During the development of LedgerMaster, a double-entry accounting 
package written in DataEase, there was a good deal of opportunity to 
press the concept to deeper implementations as clients business 
requirements demanded more complex and efficient solutions. I 
would say 'more complex' implementations, but the powerful reality 
of ANF comes through simplification. This type of simplification 
may be recognized in reductionist thought, holographic theory, or 
abstract theory wherein all parts are merely subsets of the whole. At 
the deepest levels of the theory it truly does represent a simplification 
of the overall relational construct in much the same way as the first 
five levels of data normalization do.

As an introduction, we’ll define the primary aspects of Abstract Nor-
mal Form in the first chapter. From there, we'll dive into deeper and 
broader implementations until we reach its current state as I know it, 
and as it is being implemented in the three-tier rewrite of LedgerMas-
ter. I'll also touch on "Non-First Normal Form" (NFNF) since it paral-
lels Abstract Normalization to a degree in some of the ANF 
constructs, though NFNF requires exponential amounts of data-
redundancy depending on the number of subsets desired, while ANF 
achieves the same through joins with no data redundancy. Finally, I'll 
briefly re-iterate the various levels of Data Normalization from First 
Normal Form to Fifth Normal Form (1NF - 5NF) in the chapter on 
Normalization, mostly because others have thought it a good idea for 
purposes of reference. 

In conclusion, it's now my opinion that while we have in the past 
modelled data in linear constructs extending to many levels of nor-
malization to resolve issues which affect the management and use of 
data, we now need to consider modelling data in the structure in 
which it actually exists, which is in subsets, as well as the whole set. 
By expanding the definition of normalization to encompass perma-
nent subsets of data through structural enhancements, we not only 
reduce the redundancy of data, but resolve redundancy at both the 
construct and logic levels. We thereby improve performance expo-
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nentially, in some cases in ways which are difficult, if not impossible 
to measure because its implementation allows us to eliminate partial 
or whole constructs entirely. 

Hopefully, this treatise will bring some formalization to the concept, 
theory, constructs, and techniques that other programmers have used 
almost unconsciously and informally over time, as well as the expan-
sion of those constructs.

I’d like to extend many thanks to Tonia, my wife and special other, 
for her ongoing encouragement in pursuing the completion of this 
treatise. To Fred Kingston for always asking me to consider the 
downside in a construct from a presentation and end-user perspective. 
To Joe Celko for steering me in the right direction with regard to 
NFNF similarities. To Dallas Day for granting me the autonomy and 
the initial means to pursue the quest. To Graham Smith, for his contri-
butions and work in validating the use of these concepts in a SQL 
environment. To Phil Winkler and Debe Winkler for their support in 
the development and presentation efforts. To Adrian Jones for editing 
the final copy, and his work in demonstrating the validity of these 
concepts in a file/server GUI environment. To all the good folks on 
the Software Development Forum who provided feedback for the 
first draft. And finally to all the DataEase programmers and develop-
ers throughout the world who have helped to make it possible through 
their online assessments and feedback. 

Note that this is where the concept stands at this time, and I think it 
important to maintain the history of its development. It has become 
much more defined than it was in 1992, and grows in validity and 
value at each subsequent level.
 
Les Cardwell

(Note: this has been formatted to print as a double-sided copy, suit-
able for binding and to reduce the amount of paper required)
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CHAPTER 2 Abstract Normal Form
The focus of abstract normal theory is on projections of subsets, and 
the elimination of redundancy through the normalization of these 
subset projections, rather than the practice of denormalizing to 
achieve a similar, less efficient result. Because of this, we may wish 
to extend our definition of normalization beyond 5NF. Given the 
results to date, it has been suggested that "Abstract Normalization" 
may be a candidate for Sixth Normal Form (6NF).

While it may be that the concept as a whole does merit such consider-
ation, it might instead be portrayed as a parallel adjunct to Data Nor-
malization because of its very nature. To date, I’ve defined five levels 
of Abstract Normalization which in many ways parallel the five lev-
els of Data Normalization (1NF to 5NF). Each of these levels is 
broader in scope than the previous and resolves greater levels of 
redundancy within each level. These constructs create what I’m 
defining as Abstract Normal, or perhaps better yet, “Abstract Normal 
Form” (ANF). Finally, it may also be said that ANF normalizes the 
business rules in an application, since its structures and use are in fact 
driven by the applications business rules.
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The goal of ANF is the same as any goal of normalization, which is to 
eliminate redundancy in a database schema. In the case of ANF, the 
result is the elimination of redundancy not only for data, but also the 
elimination of redundant application structure, and the optimization 
of logic execution by isolating sets of data into relational subsets. 
These constructs may be seen as enhancements or extensions of nor-
malization which achieve a type of added dimensionality, and play on 
the power of the relational engine. From sets of data, to subsets, to 
subsets, ad infinitum, one eventually begins to see structures in holo-
graphic terms. Hopefully, software RDBMS vendors can continue to 
enhance the underlying engines in ways which facilitate our ability to 
capitalize on added dimensional insights as more efficient structures 
are conceived.

Our objective in this chapter is to define and explore the concept of 
Abstract Normalization and its application. The problem we face 
without employing ANF structures is the incurrence of redundancy in 
using a Primary Key relationship when asked for a projection of a 
subset aggregate result or a specified subset of that relationship. This 
redundancy occurs because of the unnecessary incidence in reading 
irrelevant rows resulting in performance degradation. We eliminate 
this redundancy through the creation of ANF structures when an 
aggregate result or select subset is desired.

The heart of ANF lies in defining and utilizing an "Abstract Key" 
(AK), which is a value that contains either a Primary Key (PK) or a 
Foreign Key (FK) in a manner which represents the current data-state 
for a row (a record), and which represents a subset of data contained 
within a table as a whole. In other words, we are defining a subset of 
data within a table which has meaningful consequences in achieving 
a projection of that data. The cost to achieve ANF may be an extra 
column and index in some RDBMSs, and a combination of keys 
through the use of a compound index to achieve a subset in others. 
We then apply secondary joins between tables which represent these 
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subsets, rather than using a single join between two tables to create 
all projections needed in a business application.

The bottom line is that ANF is about subsets and super sets, two sides 
of the same coin, created through joins which eliminate redundancy 
and improve efficiency. The result is that we end up with sets and 
subsets of data, rather than seeing data as just a single set. Ultimately, 
these sets and subsets can span many tables to achieve a result, reduc-
ing traditional transactional requirements by tens of thousands of 
lines of code and making redundant many tables. 

In ANF2, it's worth noting that I've been using this construct for over 
five years, against intense order entry demands, with over 40,000 
inventory items, and have yet to incur greater than a one second delay 
in aggregating a Quantity Available value. This is across many tables 
utilizing a virtual reference (lookup) to a virtual aggregate against 
many virtual aggregates, which is generally considered taboo in 
RDBMS design. 

The reason this works is because even though we are aggregating 
across many tables to create a tertiary join, the subsets are small, cre-
ating an aggregate subset which in itself is also relatively small. And 
that really is the point. Performance is related to the subset, not the 
set, assuming proper design techniques are utilized.

Because this is relatively new ground, I've had to invent some new 
definitions so please bear with me as we progress. Hopefully you’ll 
also forgive me if I repeat my definitions in the text.

Primary Key Join: that join which exists between the primary key in 
a given table, and a foreign key in a related table. This defines the pri-
mary join between two tables. For Customers and Invoices, this join 
would exist on the Customer ID column. This definition is necessary 
because we will be creating multiple joins between tables to construct 
smaller subsets.
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Data-state: the state of data represented by a given row according to 
the business rules in an application. For example, an Invoice may be 
either ‘Open’ or ‘Closed’, which represents two distinct data-states.

Source Table: that table which supplies the data to be used in the 
projection.

Target Table: that table, or form in an application front-end, which 
displays the projection, or results, from the source table. A target can 
also exist as a query, view, or result table.

Projection: any subset representation of data contained in one or 
more tables. These may be expressed as aggregates, views, subforms, 
or result tables.

Virtual Projection: any projection which is the result of a calculated 
variable, whether that exist in a user interface form, a middle-ware 
repository, a view, or in some cases, a user interface query or report. 
This may also be referred to as a Virtual Column in the text to repre-
sent its use in a middle-ware repository.

Abstract Key: a secondary key which exists on a source table, cre-
ated for the purpose of isolating smaller subsets of data. This key typ-
ically exists as either a sub-struct or super-struct of a primary or 
foreign key value, and represents the current data-state of a given 
row, allowing us to identify subsets from a single column. An abstract 
key can also exist as a compound index across many columns which 
represent the data-state of that row. The important factor is that this 
key exists on a single index, regardless of the number of columns. It 
could be said that the abstract key ultimately exists as an index since 
both forms of creation result in an index which is the single point of 
reference in isolating a subset. 
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Abstract Join: the creation of a second join between two tables using 
alternate keys to facilitate the desired projection in a way which elim-
inates data and logic redundancy in retrieving subsets, and allows us 
to select a subset without reading the source table data. We only read 
a single index to complete the projection.

Abstract Normalization: a partitioning of the primary key join 
which exists between two tables, through the use of secondary and 
foreign key constraints, to achieve a select subset (or abstract) based 
on all possible data states which affect a defined result, or projection.

Benefits of Abstract Normalization-

1. Increased performance in:
• aggregating values from relational constructs
• projecting a subform subset through first tier constructs
• SQL Views
• selecting a subset group of records for processing in a query
• projecting a subset result table across many header tables

2. Enhanced data-integrity through the use of 'relational' rather than 
'transactional' means. 

This is a little more difficult to describe, but the benefits of maintain-
ing a value as a virtual projection based on an abstract construct is far 
less fraught with programmatic pitfalls than maintaining it through 
transactional means. 

For example, if we maintain a Quantity Available in an Inventory 
table transactionally, the number of ways we have to account for this 
value grows with the breadth, depth, and flexibility of the system. 
However, if we maintain it through an abstract construct, all we need 
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to ensure is that the data in the source tables is correct for the projec-
tion to also be correct.

3. Elimination of redundant intermediate tables. This is best 
explained in ANF3 and higher, and reaches its apex in ANF5.

4. Reduction of transaction code. Using the Inventory example in 
item #2 above, if we maintain a value as a virtual projection on an 
abstract construct, none of the transactional code usually necessary is 
required. 

5. Ability to reduce, and perhaps eliminate certain requirements to 
create data-warehouses of information through the isolation of sub-
sets.

Rules of Abstract Normalization-

1. Relationships are specifically 'one way' relationships. The target 
(‘one’ side) is never referred to from the source (‘many’ side). Hence, 
we have no need to index the reference column in the target. 

2. The target table may utilize other secondary key fields to facilitate 
the projection of various subsets. The number of secondary abstract 
key fields on the target (‘one’ side) is determined by the number of 
data-states in question. For example, in Customers/Invoices, we may 
wish to display separate subform projections in the user interface, 
which represent ‘Open Invoices’ in one subform projection, and 
‘Closed Invoices’ in another. In this case, unless the front-end tool 
allows for scripting subform projections where-in the join occurs in 
the SQL script, we would need to add two secondary key fields to 
Customers to facilitate the subset joins to the abstract key in Invoices, 
one secondary key in Customers for each subset desired. These fields 
are not indexed, their values never change once derived, and are only 
used in joins to isolate related subsets. (As a personal preference I 
always append these field names with the word 'Key') 
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3. The source table may utilize an indexed, concatenated abstract key, 
whose value changes according to the state of the data in question, or 
it may be a composite foreign key utilizing a compound index which 
also represents the state of the data in the source table.

4. Since relationships are based on exact match joins, and no range 
searches are ever applied to an abstract key, if available and appropri-
ate, and if the data type of the foreign key fields is text, a hash index 
should be used. It’s imperative to note that all abstract joins read the 
subset on a single index. In other words, the ‘select’ doesn’t read the 
table data, but rather makes its selection against an index.

5. Relationships are created using either a sub-struct or a super-struct 
of the primary key field in the source table, usually a super-struct 
unless the primary key in the source table is a ‘smart-key’ and an 
extraction can be derived based on the data structure. For example the 
Inventory Item (primary key) 'R-6010-P1' might represent Oak (R-) 
Traditional Rail (6010) with a 1-1/4" plow (P1). Hence we can extract 
the 'R-' for all Oak items, the '6010' for all species/plows of Tradi-
tional Rail, '-P1' for all 1-1/4" plowed hand rails, or a concatenation 
of any of the two of the three for unique combinations to create sub-
sets. On the other hand, we might create a super-struct key as a con-
catenation of an indicator to identify a subset, along with the primary 
key. For example, Open Invoices may be identified by concatenating 
an ‘O’ with the Invoice number to become ‘O99999’, which is in 
essence a super-struct of the primary key.

6. Where possible, as in any relationship, it's most desirable to use 
integer fields versus text or numeric string fields because integer 
fields use fewer bytes and are therefore more efficient. However, note 
that most keys used in creating abstracts are constructed of text fields 
for intuitive purposes, and most super-struct keys of this nature use 
alpha-numeric leading or trailing characters for this reason.
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7. The number of ideal abstract relationships is governed by: 

• The need for those relationships, determined by the demand for 
aggregates and/or subsets as dictated by the applications business 
rules. 

• The capacity of the underlying relational engine and hardware to 
support the implementation.
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CHAPTER 3 ANF1 - Projection of a 
Single Subset
Applications -

• Aggregate projection - in a query, virtual derivation, or form event.
• Subset projection - of a user interface subform (master/detail).
• Subset projection - of a view.
• Query utilization - to increase performance.

Synopsis -

Abstract Normal Form 1 (ANF1) can, and should, exist when a subset 
projection is desired from data in a single table, and is part of the per-
manent structure of the application as defined by its business rules.

We accomplish this through the use of an Abstract Join which allows 
us to achieve the desired projection without reading irrelevant table 
rows in retrieving the subset. This projection can come in the form of 
a query, an aggregate (in a query, repository derivation, or form 
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event), a view, or a user interface subform projection where an iso-
lated subset needs to be displayed. 
Achieving the subset projection efficiently requires a means of identi-
fying this subset via a single index, and a means of referencing that 
subset through:
• referencing the abstract key in a query via direct reference
• referencing the abstract key in a query via a variable
• joining the key on like columns from another table

The goal in ANF is to retrieve a subset by reading a single index. All 
other aspects we discuss revolve around this goal, and represent both 
the means and benefits of achieving this goal.

In the case of a query or view, the query or view is the target, which 
in turn displays the results. 

In the case of a user interface form, where we wish to display an 
aggregate, or a subform of subset data, the form (or table) is the target 
since that is where the results will be displayed to the user. The joins 
in this instance can be achieved using a PK/FK construct on the SQL 
back-end (usually as a unique constraint/FK struct), or by using a 
named relationship in the middle-ware repository.

In a query or view we can use either a variable or a direct reference to 
the subset value desired. In this example, we are using the column 
bal_due_key to join the value using a direct reference, where the 
stated value of ‘O99999’ is the reference being joined on:

SELECT customer_name, SUM(balance_due)
FROM    Invoices
WHERE bal_due_key=’O99999’
GROUP BY customer_name
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We could also use a variable to reference the abstract key:

DECLARE @ak varchar
SELECT @ak=’099999’
SELECT customer_name, SUM(balance_due)
FROM   Invoices
WHERE  bal_due_key=@ak
GROUP BY customer_name

Finally, we can utilize a projection on a user interface form (aggre-
gate field or subform) to project an aggregate value in a field through 
a repository derivation, or to create a subset subform (master/detail) 
projection which lists only those rows which are specific to the sub-
set. 

To achieve the join, we need to store the subset reference value in the 
target table which allows us to facilitate the join to the abstract key in 
the source table. This is done through either a compound index over 
multiple columns which together represent the data-state (or subset) 
of that row, or through an added (indexed) column on the source table 
which contains a concatenation of the foreign key and a pneumonic 
representation of that row’s current data-state. 

Essentially, to reiterate the definition of an abstract join, when two 
tables are involved, we are creating a second join between these 
tables using alternate keys to facilitate the desired projection in a way 
which eliminates the reading of irrelevant rows in the source table.

We only read a single index which is created over the column 
‘bal_due_key’ in Invoices: 

SELECT customer_name, SUM(balance_due)
FROM   Invoices, Customers
WHERE Invoices.bal_due_key=Customers.bal_due_key
GROUP BY customer_name
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To further illustrate, in this chapter we’ll create two examples which 
project a single subset. 

To create the abstract key, in Example #1 we’ll extend the examples 
offered above and add a column to define and represent the subset, 
and in Example #2 we’ll utilize a compound index against pre-exist-
ing columns to define the subset.

Example #1 -

Objective: Create an abstract projection of only those Invoices with 
outstanding balances. In this case, we want to know the ‘sum of’ all 
Invoices for a Customer with a Balance Due greater or  less than zero.
We’ll utilize an abstract join to eliminate the logic redundancy which 
is typically inherent in performing the projection when using the pri-
mary key join between Customers and Invoices (aggregation in this 
case).

For this example, we’ll need to create the following tables and popu-
late them with data.

Data-definition for tables Customers and Invoices:

CREATE TABLE Customers
(cust_id INTEGER NOT NULL PRIMARY KEY)

CREATE TABLE Invoices
(invoice_no INTEGER NOT NULL PRIMARY KEY,
 cust_id INTEGER NOT NULL, 
 bal_due INTEGER NOT NULL
 bal_due_key VARCHAR NOT NULL)

We then need to populate these with data. All we need for Customers 
(the ‘target’) is a single row for these examples. This row exists 
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solely as a means to reference the abstract key in the source table, 
which will allow us to create a projection of the desired subset in the 
target table.

INSERT INTO Customers (cust_id) values (‘99999’)

Invoices is the ‘source’ table, and we need to create a relevant data-
set to facilitate the example. This stored procedure creates 100,000 
Invoices, of which every 100th Invoice has a Balance Due value 
which is not zero. In other words, every 100th Invoice has an amount 
owing:

CREATE PROCEDURE Make_Invoices AS
DECLARE @knt integer
SELECT @knt=0
WHILE @knt<100000
    BEGIN
    SELECT @knt=@knt+1
    INSERT INTO Invoices (cust_id,bal_due,bal_due_key) 
    VALUES (99999,0,'O99999')
        IF MOD(@knt,100)=0
        INSERT INTO Invoices(cust_id,bal_due,bal_due_key)

        VALUES(99999,10000,'P99999')
  COMMIT TRANSACTION
  END

If preferred, you can just use ISQL to acomplish the above and strip 
out or modify the pertinent code. I create it as a stored procedure so I 
can run multiple tests under varying circumstances.

Typically, Customers and Invoices are related on the Cust_ID field, 
which is the primary key in the Customers table. If an aggregate pro-
jection is added to the Customer record which shows the sum of the 
Invoices Balance Due column, the performance hit in deriving this 
total will grow proportionally in relation to the number of Invoices 
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generated for this Customer over time. What occurs is that all the 
Balance Due values for all the Invoices related to this customer based 
on the primary key join are read, calculated, and added, even if that 
value is zero. 

Hence the query:

SELECT cust_id, SUM (balance_due)
FROM Customers, Invoices
WHERE ( Customers cust_id = Invoices cust_id )
GROUP BY cust_id

which is essentially what we ask for in projecting a subform, or in an 
aggregate virtual projection, will read all Invoices for each Customer 
in the Customers table, as will a field derivation (virtual or non-vir-
tual) in a user interface form. If a customer has 1,000 Invoice records, 
and only 25 of those records have a value in the Balance Due column, 
the RDBMS will still read all 1,000 Invoice rows, adding 975 zeros 
and 25 non-zero values. 

Changing the query to select only those Invoices with a Balance Due 
greater or less than zero may improve performance. However, it still 
requires secondary evaluations to complete the selection set. In other 
words, it still has to read all 1,000 Invoice records to isolate that sub-
set which only includes Invoices with a balance due not equal to zero:

SELECT cust_id, SUM (balance_due)
FROM Customers, Invoices
WHERE ( Customers cust_id = Invoices cust_id 
AND balance_due > 0
OR balance_due < 0)
GROUP BY cust_id

As well, neither a user interface subform nor a repository derivation 
will be able to utilize a reduction of this nature (exclude all zero val-
Abstract Normalization : An  Advanced Concept of Relational Theory



ues), so an exclusion of this type is only available to a query, a view, 
or an event utilizing an Exec SQL statement, even if it did deliver the 
results desired. 

Through the use of an abstract, we can resolve this by the addition of 
a column (the ‘abstract key’) which derives its value as an abstract of 
an Invoice’s current ‘data-state’, and use that column to facilitate 
either a join, or a reference in a query.

To achieve this, we first need to determine the possible 'states' the 
data we want to aggregate or project can exist in this context. In this 
case, an Invoice is either 'Paid' or 'Open'. We then need to assign an 
acronym for the various data-states:

Invoice-State Indicator
   Paid = ’P’    
   Open = ’O’

We can then concatenate ’P’ for Paid and ’O’ for Open with the Cus-
tomer ID (foreign key in Invoices) to create the AK (we might call 
the column ‘bal_due_key’, and the index ’ak_bal_due’). Therefore an 
Invoice which is open and which has a Customer ID assigned of 
99999 would derive as ’O99999’ and one which is Paid would derive 
as ’P99999’ (or to better utilize index trees, ‘99999O’ and ‘99999P’) 
which can be enforced through form events, repository derivations, or 
SQL triggers. This allows us to find all open Invoices for this cus-
tomer by requesting a join on ‘O99999’, rather than joining on 
‘99999’ which would retrieve all Invoices regardless the state of the 
Invoice.

Assume this Customer has 1,000 Invoices in the Invoices table, of 
which 25 are ’Open’. Traditionally, as mentioned above, if we join on 
the Customer ID and ask for an aggregate of Invoices Balance Due, 
the RDBMS will have to read 1,000 rows to aggregate the Balance 
Due column. If instead, we join on the AK (either through a second-
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ary AK column used to create a join in Customers, or on a variable if 
referenced in a query), the RDBMS will only need to read 25 rows. 

These things accomplished, we can now isolate the desired subset 
with a single reference:

SELECT cust_id,  SUM (balance_due)
FROM   Invoices, Customers
WHERE ( Invoices.bal_due_key = Customers.bal_due_key )

(Note that we can create the AK through either concatenation as in 
this case, or a Compound Index as in the example to follow.) 

To reiterate, this is the root of ANF, a single index reference in the 
creation of an abstract, or subset, projection. The most important 
aspect to note is that we are now only reading a subset of the data. In 
other words, to expand on the benefit, assume for a moment that a 
Customer has a relatively constant open Invoice count of twenty-five 
invoices at all times. The significance here is that no matter how 
many closed/paid invoices this customer has in the database, whether 
that be 500, 1000, or 1,000,000, the performance hit for aggregating 
or projecting the balance due for the twenty five open invoices will be 
relatively constant. To be concise, there is no significant degradation 
in performance in maintaining this projection. 

If the projection of a subset is to be in the form of a subform con-
struct, or a virtual aggregate derivation in the user interface wherein 
Customers is the desired target table, then we’ll need to add a second-
ary key to the Customers table to allow us to complete the join over 
the abstract key, which will default to the same data-state as the 
Invoices AK when an Invoice is Open. In this example, that value 
would be a concatenation of the data-state indicator for Open, and the 
Cust ID (‘O999999’).  This allows us the luxury of joining the two 
tables via a repository relationship, or on a unique constraint, to facil-
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itate the subform projection of only those Invoices for each Customer 
which are Open.  

We can also reverse this key, or add another column if two subform 
projections are desired, to project those Invoices which are Paid 
(‘P99999’). This can also be accomplished with a SQL view or query 
without the need for the creation of an additional column in Custom-
ers because of our ability to state the join criteria in SQL.

Maintenance of the AK column in Invoices can occur through any 
one of a number of methods - a repository derivation, a trigger, or a 
transactional statement in a stored procedure. Since we are always 
maintaining this column in accordance with the Invoice’s data-state 
however, a back-end trigger ensures the data-correctness of this col-
umn by validating and re-validating the data any time the record is 
touched regardless of the front end tool used.

Since all joins and query references will be ‘exact match’ joins, we 
can further improve performance by adding a ‘hashed index’ to this 
column.  

The benefits of such design proliferate as uses of well defined AK’s 
are utilized in queries, reports, and projections, since they can be used 
under a number of scenarios. The above example can be used to 
project subforms for Open Invoices and Paid Invoices, reports for 
Close AR Period, Customer Statements, etc., all with the same bene-
fit in performance against the same abstract key. The cost of adding 
the column and index is far outweighed by the benefits gained.

Example #2 -

Tables: General Ledger (GL), Journal
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Objective: Create an abstract projection of only those Journal entries 
for the current period, for each GL account.

Abstract Key:  Utilize a Compound Index to isolate a subset and 
eliminate redundancy.

Data-definition -

CREATE TABLE GL
(gl_no INTEGER NOT NULL PRIMARY KEY,
 period INTEGER NOT NULL,
 fiscal_yr INTEGER NOT NULL)

CREATE TABLE Journal
(gl_no INTEGER NOT NULL,
 period INTEGER NOT NULL,
 fiscal_yr INTEGER NOT NULL,
 amount INTEGER NOT NULL)

(Note: for this example, we’ll ignore the PK for Journal as it would 
only serve to confuse the subject at hand)

What we want to project are those transactions for a given GL 
account, for a given accounting period.  So, for example, we might 
want to see an aggregate for each GL account, for the existing current 
period in the GL.  To facilitate the join, we need to add a Current Fis-
cal Year and Current Period column to isolate this subset, and ensure 
through application business rules that these two columns always 
derive to the Current Accounting Period during the ‘Close Period’ 
process in typical accounting scenarios. This resolved, we can 
achieve the subset with the following query:

SELECT gl_no, SUM(amount)
FROM   Journal, GL
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WHERE (GL.gl_no = Journal.gl_no
AND     GL.fiscal_yr = Journal.fiscal_yr
AND     GL.period = Journal.period)
GROUP BY gl_no

Again, there are a number of scenarios in which we might want to 
achieve the above projection:

1. Master/Detail subforms
2. Virtual aggregates
3. SQL Views
4. Queries 

In this example, since the data serves as its own abstract because the 
data-state can be defined over multiple columns, we don’t need to add 
a column to obtain a representation as long as the RDBMS engine 
being utilized allows for the creation of a compound index. If it does, 
the above query would result in a read of the ‘AK’ compound index 
created across ‘gl_no’, ‘fiscal_yr’, & ‘period’, rather than reading the 
table itself. If not, then another column would need to be added to the 
Journal table as a concatenation of the three columns, as well as to the 
GL table if a subform projection, or a virtual field projection, is 
desired for the user interface. For our purposes here however, we’ll 
assume the the engine does in fact allow the creation of compound 
indexes, hopefully also allowing them to be hashed since we are only 
interested in exact match references to that index, and that the engine 
optimizer is designed well enough to take advantage of such an 
index.

From here, the requirements to achieve a projection are the same as in 
example #1. The only real difference is in how the abstract is created 
in that we are using a compound index rather than the addition of a 
column to contain the abstract, over which the join is created.
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To project a subform of this subset, or an aggregate for the period 
transactions of the subset, we would define a join between these two 
tables on these three columns in the repository. The engine would 
then read the compound index in projecting a subform on the user 
interface, resulting in a single read of the source (Journal) joined on a 
target value in the GL table.  

Finally, again, there is little if any performance degredation incurred 
based on the size of the Journal table as a whole. The performance hit 
is in direct proportion to the size of the sub-subsetset, not the size of 
the table. Therefore, assuming we have a relative constant subset for 
each period, for each GL account, regardless of the overall size of the 
entire set represented in the Journal table, we can maintain a great 
deal of history in the Journal table. This can exist with little concern 
for degredation, without the need to maintain an archive table, nor the 
need to populate result tables to obtain query results which may span 
both an active Journal table and an archive Journal table, resulting in 
much easier query writing.
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CHAPTER 4 ANF2 - Projection of 
Multiple Subsets
ANF2 exists across many tables to create a tertiary subset which 
spans those tables. The purpose of ANF2 is to create a subset projec-
tion which is functionally dependent on other subsets, or perhaps, a 
subset of many subsets, which are projections of ANF1 constructs.

The number of applications of ANF2 is narrower than those of 
ANF1, and is for the most part limited to aggregations and references 
to those aggregations. However, the construct brings further normal-
ization in the projection of subsets in an application, resulting in real-
time tangible benefits to both the user and the developer. 

To elaborate, we’ll be using an Inventory example which has been in 
use for well over five years in a variety of environments. While this is 
actually quite direct and simple once understood, there are several 
aspects which need to be reviewed to fully appreciate the impact. 

The basic structure and concept is the same as in ANF1, and in both 
cases we can use the subset retrieved in views, master/detail situa-
tions, and in queries, albeit somewhat differently. Remember that 
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repositories allow the use of virtual columns, front ends utilize virtual 
fields within a form, and SQL allows virtuals in a view. Each projec-
tion has its purpose and application.

What we want to achieve in this example is to identify real-time 
Inventory quantities for outstanding commitments, and a real-time 
Inventory Quantity Available value for each Inventory Item. Our 
model allows us to accomplish this goal with little or no transactional 
code.

The tables involved are:
• Inventory - target table.
• OrderDetail - source table.
• PODetail - source table.

In our example here, the Inventory table is the target table and the one 
side of the relationship, and to some extent exists as a virtual table on 
the front-end and in the repository (if a three-tier product is used), 
because the majority of the values seen are actually virtual projec-
tions. 

It is worthy to note that the same results can be had without the use of 
virtual projections by forcing a column to update through the use of 
triggers or procedures while still taking advantage of the abstract con-
struct. However, the availability of virtual attributes at the first or sec-
ond tier adds valuable benefits. This can be achieved in SQL without 
the benefit of either a middle-tier or a front-end through the use of 
views. It is also possible in some products to reduce the code required 
in maintaining the abstract keys though ‘cascade updates’ which is 
otherwise enforced through derivations, triggers, or stored proce-
dures. If the RDBMS allows for a ‘cascade update’ to a foreign key, 
whether defined over a primary key or a unique constraint, then nei-
ther a derivation, trigger, or stored procedure may be required. Unfor-
tunately, not many engines come equipped with this option.
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Again, because ANF2 is an extension of, and functionally dependent 
on ANF1, we need to identify the various ‘data-states’ in which a 
record can exist to create the ANF1 constructs. This is best deter-
mined by evaluating what we want to see on screen, and what we 
need to determine as the end result whether seen or not. In the Inven-
tory table itself, we might have the following columns to identify the 
potential 'states' an Inventory Item can exist in. All the following 
states except the first one are maintained via an abstract construct 
using a virtual projection.

1. Physical Inventory - uncommitted, on the shelf, not maintained by 
an abstract. This is the only column which will most likely be main-
tained transactionally, although it is possible to maintain it as a virtual 
projection. When an Order or Purchase Order is posted, the Physical 
Quantity gets adjusted transactionally and is accounted for only at the 
time an Order, Purchase Order, or Work Order in a manufacturing 
environment, is closed. 

2. Customer Orders - represents open, unfilled Orders placed for Cus-
tomers by the Order Entry desk (ANF1).

3. Staged Orders - represents open, un-delivered Orders, packaged 
and ready for delivery (ANF1).

4. Purchase Orders - represents items on order, not yet received 
(ANF1).

5. Received - Purchase Order Items which have been received, but 
not posted (ANF1).

We may also track 'Raw Materials' and 'Work In Process' using the 
same logic in a Manufacturing environment, but the above ‘data-
states’ will suffice for our example.
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It’s also worth noting that in some systems, the data-state will be 
determined in the master table (i.e. - Orders, or PurchaseOrders in 
this case), and in other systems the data-state will exist for each detail 
record independently (i.e. - line items for OrderDetail and PODetail), 
and finally in others they may exist in combination. This is because a 
company’s business rules may state that an Order is never closed per 
se, but an individual Line Item is considered closed once all quanti-
ties for that item have been delivered or received. A combination can 
exist when an Order or PO allows for back-orders, but once the 
Order/PO is posted, the entire transaction is closed. For our example 
here, we will assume that each line item is represented independently 
so we don’t get lost in functional dependencies on the master table.

Data Definition Language (DDL) 

CREATE TABLE Inventory
(item VARCHAR (15) NOT NULL PRIMARY KEY,
 qty_available INTEGER NOT NULL,
 status_cl_key VARCHAR (16) NOT NULL,
 status_op_key VARCHAR (16) NOT NULL)

Note: if using SQL, add a trigger to the table to concatenate the data-
states of the key values:

status_cl_key = concat (‘C’, item)
status_op_key = concat (‘O’, item) 

CREATE TABLE OrderDetail
(item VARCHAR (15) NOT NULL,
 quantity INTEGER NOT NULL,
 status VARCHAR (1) NOT NULL,
 status_key VARCHAR (16) NOT NULL)
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Note: if using SQL, add a trigger to the table to concatenate the data-
state of the key value:

status_key = concat (status, item)

CREATE TABLE PODetail
(item VARCHAR (15) NOT NULL,
 quantity INTEGER NOT NULL,
 status VARCHAR (1) NOT NULL,
 status_key VARCHAR (16) NOT NULL)

Note: if using SQL, add a trigger to the table to concatenate the data-
state of the key value: 

status_key = concat (status, item)

The natural joins are as follows:

OrderDetail.item references Inventory.item 
 PODetail.item references Inventory.item 

To restate: the projections can be virtual columns in the repository 
(three-tier) or virtual fields in the front-end user interface. Depending 
on the application, a SQL View may well suffice for all the same rea-
sons. 

The virtual columns/fields we can utilize in this example are:

• Open Customer Orders (‘open’)
• Staged Customer Orders (‘staged’)
• Purchase Orders (‘po_open’)
• PO Items Received (‘received’)
• Quantity Available (‘available’)
• Inventory Position (‘position’)
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When we are done, the final result would be to construct a Quantity 
Available and Inventory Position value in the user interface (UI) 
using the following:

        Physical Inventory
      - Open Customer Orders (ANF1)
      - Staged Customer Orders (ANF1)
      + PO Items Received (ANF1)
      -------------------------
      = Quantity Available (ANF2)

      + Open Purchase Orders (ANF1)
      -------------------------
      = Inventory Position (ANF2)

Note that I’ve indicated to the right of each of the above the corre-
sponding ANF structure attributable to each projection. If we are now 
entering an Inventory Item into an Order Detail record in Order Entry, 
whether through two-tier or three-tier, we can lookup the Quantity 
Available value from Order Detail to retrieve a ‘real time’ Inventory 
Quantity On Hand. 
     
In our vertical market accounting application (LedgerMaster) we do 
this using virtual columns in the middle-tier/front-end, and perform 
lookups from the Order Detail table against these aggregate virtual 
columns as per above with a performance hit of less than one second. 
This is doable because we have reduced our data-set to small subsets 
(relatively speaking) and our overhead is directly related to the size of 
those subsets, not the data-set as a whole.

Note that since the PK in Inventory is Item Number, our abstract key 
is going to be a concatenation of a data-state indicator and the Item 
Number. In our example, we can deduce that there are essentially 
three data-states in which an Item can exist:
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1. Open (Open Customer Orders, Open Purchase Orders)
2. Closed or Complete (Staged, Received)
3. Posted 

To keep it simple, we’ll use the first character of each data-state to 
concatenate with the Item Number, hence Item Number ‘99999’ 
would concatenate to the following for each data-state:

1. Open = ‘O99999’
2. Closed = ‘C99999’
3. Posted = ‘P99999’

Now that we know our possible states, we can construct the Abstract 
Key. In OrderDetail and PODetail we need one column each, indexed 
(the 'many' side). Given an Inventory Item number of 99999, there 
are three possible values for this column (which we've called 
‘status_key’):

1. O99999 - Open Customer Orders, Open Purchase Orders
2. C99999 - Staged Customer Orders, Received Purchase Orders
3. P99999 - Posted Customer Orders, Posted Purchase Orders

As in ANF1, the data in the abstract keys is maintained either through 
derivations, methods, triggers, or procedures, and is driven by the 
application business rules. We typically use triggers since any change 
made to the back-end, from any source, will result in verifying the 
data-correctness of these keys. Regardless of the method chosen, 
essentially what we need to enforce for the ‘status_key’ in Order 
Detail and PO Detail is the following:

 if (status = “Open”, concatenate (“O”, item),
 if (status = “Closed”, concatenate (“C”, item),

if (status = “Posted”, concatenate (“P”, item), null)))
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Note: if you’re doing this in SQL, use a trigger on the table to enforce 
the logic through a simple concatenation for both Order Detail and 
PO Detail tables.

In this example, we are using a column (‘status’) to determine a line 
item’s data-state. In actual practice, that determination usually 
derives from the application or company business rules based on any 
one of a number of factors relating to a particular line item.

Since we are going to aggregate values based on these columns from 
within the Inventory table for this example, we need to create a (non-
indexed) column for each of these possible data-state values in Inven-
tory to facilitate the abstract joins. This is only true for the target table 
(the 'one' side). The reason these columns do not need to be indexed 
is because we never have need to use a join from the source tables 
back to the target table since only the source tables represent the sub-
set. 

Hence, we created two columns in Inventory which always default to 
one value, a concatenation of each identified data-state and the Item 
Number:

1. O99999 - named "status_op_key"
2. C99999 - named "status_cl_key"

The source tables always contain only one column/key to identify a 
subset. The reason for this is that the data value for the data-state on 
the many side, or source table, changes each time the data-state 
changes. The reason we need static representations on the target table 
(IE-Inventory) is to facilitate a join for each possible data-state.

This done, we can now create three joins between Inventory and the 
source tables:
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Entity Relationship Diagram

1. Joins between Inventory and Order Detail:

  Primary Join:
        Inventory -----------------------<  Order Detail
          item                                            item

  Abstract Joins:
        Inventory -----------------------<  Order Detail
          status_op_key                           status_key
           
        Inventory -----------------------<  Order Detail
          status_cl_key                             status_key
          

2. Joins between Inventory and PO Detail:

  Primary Join:
  Inventory -----------------------<  PO Detail

          item                                            item

  Abstract Joins:        
        Inventory -----------------------<  PO Detail
          status_op_key                            status_key
           
        Inventory -----------------------<  PO Detail
          status_cl_key                              status_key

We can now aggregate the columns in Inventory using either deriva-
tions, methods, or views by summing the quantities for each sub-set, 
and calculating our position based on those results. 
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To help clarify, in SQL the queries used to facilitate the virtual aggre-
gate projections (columns/fields) would be represented as follows:

Open Customer Orders:

SELECT SUM (quantity)
FROM   Inventory, OrderDetail 
WHERE  (Inventory.status_op_key =  OrderDetail.status_key)    

                         
Staged Customer Orders:

SELECT SUM (quantity)
FROM   Inventory, OrderDetail
WHERE  (Inventory.status_cl_key = OrderDetail.status_key)

Purchase Orders:

SELECT SUM (quantity)
FROM   Inventory, PODetail
WHERE  (Inventory.status_op_key = PODetail.status_key)

Received PO Items:

SELECT SUM (quantity)
FROM   Inventory, PODetail
WHERE  (Inventory.status_cl_key = PODetail.status_key)

These values derived, and since the Quantity On Hand is a real num-
ber, we can calculate the Quantity Available:

Quantity Available = Quantity On Hand - Open-worked - Staged

And we can calculate our Inventory Position:

Inventory Position = Quantity Available + Open Purchase Orders
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Note that we use virtual columns in the middle-ware on the Inventory 
table and user interface form as our preferred calculation logic, and 
enforce the algorithm through a derivation. We've experimented with 
the pros and cons of various business rules here and it seems the best 
all around solution because it only calculates when needed, and 
doesn't add any overhead during inserts or updates to any of the 
‘source’ tables. 

If we represent this as a SQL view, the SQL statement would be as 
follows:

create view "dba".vw_Inventory
as 
select IN1.item,IN1.qty_available,
        sum(OD1.quantity) as Orders,
        sum(OD2.quantity) as Staged,
        sum(PD1.quantity) as Purchased,
        sum(PD2.quantity) as Rcvd,
        (IN1.qty_available-Orders-Staged+Rcvd) as Available,
        (Available+Purchased) as Position
    from "dba".Inventory as IN1,
             "dba".OrderDetail as OD1,
             "dba".OrderDetail as OD2,
             "dba".PODetail as PD1,
             "dba".PODetail as PD2
    where(IN1.status_op_key=OD1.status_key)
    and    (IN1.status_cl_key=OD2.status_key)
    and    (IN1.status_op_key=PD1.status_key)
    and    (IN1.status_cl_key=PD2.status_key)
    group by IN1.item,IN1.qty_available

What occurs is that in Order Detail, when the Item Status value 
changes from "O99999 to "C99999", the join is broken for Open Cus-
tomer Orders, but is engaged for Staged Customer Orders. 
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Hence when you ask for ‘sum of <“Open” relationship> Quantity’, 
this row isn't even seen by the relationship because it no longer 
matches the ‘status_op_key’ column in Inventory. Therefore it is not 
aggregated, or even read. Only those rows with the value "O99999" 
are seen and read by the join. On the other hand, now that the ‘status’ 
key has changed to “C99999”, it’s picked up by the ‘Staged’ column 
because it now matches the value of the ‘status_cl_key’ column in 
Inventory (also “C99999”).

If you’ve set this up using front end virtual projections, or a view as 
referred to above, enter a Quantity of 100 in OrderDetail and set the 
Status to “O” for Open, then go to Inventory and notice that this 
amount will appear under that Inventory Item in the Open Customer 
Orders field.

Now go back to OrderDetail and change the Status to “C” for Closed, 
then return to Inventory if this was constructed as an application, or 
re-run the Inventory view above if using ISQL, and observe that the 
Open Customer Orders column has changed to zero, and the Staged 
column now reflects a quantity of 100. Notice also that when the Sta-
tus is changed, the ‘status_key’ changes from “O99999” to 
“C99999”. Note that the change in value reflects the change in the 
join, and that the change in Customer Open Orders to zero occurs not 
because we subtracted anything, but because we are excluding the 
row entirely from the aggregation. Hence, there is no redundancy.

Finally, change the Order Detail Status to “P” for Posted. Notice the 
‘status_key’ changes to “P99999”. If the Inventory Quantity On 
Hand column was driven by an abstract construct, this event would 
decrease the value in that column by 100. However, as mentioned 
above, we usually handle the physical quantity transactionally when 
an Order is posted. Hence, we would subtract 100 from the Quantity 
On Hand value procedurally.
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Some of the benefits derived are:

1. No transactional code is required to maintain any of the aggregate 
columns (Open Customer Orders, Staged Orders, Received, Quantity 
Available, etc.).

2. In the event of a system crash during a posting procedure, all 
aggregates and their functionally dependent (FD) columns will still 
be data-correct. If we were updating the Inventory aggregates using 
transactional means, we'd have to run an aggregate cleanup to obtain 
an accurate Quantity Available value. 

3. It overcomes the need to account for every possible addition/sub-
traction from either an aggregate column in Inventory or one of it's 
functionally dependent columns (Quantity Available) when inserting/
updating/deleting rows in any of the 'source' tables. This is multiplied 
considerably when the full Inventory feature set and all the function-
ally dependent columns are taken into account and we begin to 
account for:

• Just In Time
• Turnings/Earnings
• Short Percentages
• Period Sold Quantities
• Reorder Quantities
• Economic Reorder Quantities
• Reorder Points
• Maximum Inventory 
         
which is even more significant when considering that:

• Work In Process
• Raw Materials Committed
Abstract Normalization : An  Advanced Concept of Relational Theory 38



ANF2 - Projection of Multiple Subsets

39
         
can also be accounted for using these same constructs.

All these constructs are maintained through an abstract, or are func-
tionally dependent on an abstract derived column. Once understood 
and applied, the amount of transactional code which can be elimi-
nated becomes significant. Everything considered, the abstracts used 
against this Inventory example alone result in an overall conservative 
reduction of some 4-5,000 lines of code in our application as a whole. 
If the abstract keys are correct in the source tables, and the data and 
indexes aren't corrupt, then all functionally dependent constructs in 
Inventory are correct. No guessing, no clean-up procedures, and no 
test procedures are needed to ensure the aggregate data is correct. 

In our experience, the Inventory example has been in place since '93 
in many enterprise locations with no degradation in performance due 
to increased data size, and has never been data-incorrect as long as 
the underlying source data is correct, simply because the values are 
maintained relationally versus transactionally. 

To clarify the above, to maintain the values “relationally” means that 
the logic is enforced through the power of a join by way of a deriva-
tion, view, subform, or any other virtual relational projection. 

To enforce the values “transactionally” means that the logic is 
enforced through procedural code, usually to update non-virtual pro-
jections.

It’s somewhat redundant, but to explain further, if we didn't use 
abstracts to track the various subsets representing committed and 
pending inventory, we'd have to trace every incident wherein a given 
subset is affected and add transactional code to the insert/update/
delete process to affect the value of that subset in Inventory. Using 
abstracts, we rarely need any transactional code to maintain the con-
struct. The only time it's needed is if we create an electronic trail (i.e. 
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paper trail) of back-orders for example, and actually enter a new 
Order for the back-ordered items. In this case, we might need to 
ensure the key has derived correctly for the new Order since some 
engines might not force a recalculation at the derivation level in a 
batch insert, especially if there's a functionally dependent reference to 
a Master table. Worse case, our focus is simply on the data-correct-
ness of the underlying table. The abstract will take care of the value 
of the aggregate projection automatically (or relationally) if the 
abstract key is data-correct.

As an example, if we were maintaining each category transactionally, 
when a Customer Order is placed, we'd have to increment the Open 
Customer Order column in Inventory. If an order is voided, we'd have 
to check for its status, and if it’s still at the Open Order stage, we have 
to decrement this value. If an Order is modified, we'd again have to 
check its status, and either increment or decrement this value. As 
well, we'd have to trace for any indirect modifications to Orders 
which may affect this value from other procedures. Every time we 
wrote a procedure which affected either Inventory or Customer 
Orders, we'd have to review and be aware of any impact our code 
may have on this value (as well as 'Staged'). Using an abstract, we 
don't care... it doesn't matter. As long as the state of the Order Detail 
record is correct, then the abstract key will automatically be correct 
because it is functionally dependent on the state. Hence, we could 
affect changes to the Order from any number of procedures, and 
never have to touch the Open Customer Order column in Inventory 
transactionally. It would simply derive to the correct value because of 
the abstract construct. Multiply this across all the subsets represented 
in the Inventory table and the difference in complexity, amount of 
code, and potential for programmer error declines considerably.
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CHAPTER 5 ANF3 - Projection of 
Subsets from a Set
ANF3 deals with whole tables as subsets and resolves the redundancy 
required to maintain Non-First Normal Form (NFNF) structures at 
the first level. ANF4 is an extension to ANF3 and resolves NFNF 
structures beyond the first level. There are some front-end require-
ments to enhance the method, but the ERD remains the same regard-
less. 

Until this point, most of the explorations into the various levels of 
abstracts had centered around secondary, tertiary, and foreign keys as 
they relate or 'join' one table to another. However, an ongoing issue 
came to the forefront which necessitated an approach to solve a prob-
lem which exists in many applications wherein a quasi-NFNF con-
struct exists in an inefficient (non-normalized) form, whether 
recognized or not. This scenario is recognizable by most application 
programmers as redundant name/address constructs.

Before we get to the issues surrounding the abstract keys required in 
ANF3, lets expand on it by further exploring the issue at hand from a 
broader perspective.
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In many applications, we find several tables which are really 
attributes of Names, whether they be People or Organizations. 
Admittedly, Names are atomically separated into Organizations and 
People, however the business rules for most Organizations are such 
that the unique attribute is actually a combination of both the Organi-
zation and a Person. Ultimately, we can construct this in a number of 
different ways. However, even if we break Names down into Organi-
zations and People (abstracts of Names, or perhaps more appropri-
ately it would be named Entities, but we'll use "Names" for this 
example), the reality is that an Organization as well as a Name can 
exist as a Customer, Vendor, Shipper, etc. granting Names the privi-
lege of being at the top of the heap. i.e.:

                      Names
                      / \

  Organizations  People     

Some examples of these abstract (subset) tables are:

• Customers
• Vendors
• Prospects
• Shippers
• ShipTo's
• Buyers
• Sellers
• Members
• Subscribers
• Dealers
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It’s important to note that all these are really attributes of Names 
since each is made up of the same attributes both at a data level as 
well as a meta-data level. Whether these exist in a single table or not 
is irrelevant in the higher aspect because at an abstract level the table 
Names exists either in form or as an extrapolation.

One of the benefits of using NFNF constructs is the elimination of 
null value (or blank) columns because each NFNF construct only 
contains those columns which are functionally dependent on that sub-
set table. For example, Customers has column requirements not 
needed in Vendors, and vice versa. If we didn't employ a NFNF struc-
ture, then a Names record which existed as a Customer, but not as a 
Vendor, would leave the Vendor information columns blank, and we'd 
have a large number of null columns, increasing for each NFNF sub-
set we might try to include in the single table.

The problem occurs when an entity record (such as a company, orga-
nization, or person) exists across many tables. Probably the biggest 
complaint comes in the form of "address management" when an 
entity moves or in some way alters a record attribute such as a change 
in address or phone number. For every change made, every table 
where the entity exists has to be updated. Since each table most likely 
has its own unique (primary) key which is unique to that table, there 
is no effective way to resolve this one issue without modifying the 
underlying structure.

As well, even when a virtual projection is used to create a similar 
construct to the one we are creating here (we’ll be using a subform 
master/detail with a 1:1 projection to allow us to edit/enter Names 
from any of the sub-set tables, which a virtual projection doesn’t 
allow) the biggest complaint from users is that they may not have 
access to the parent Names table, or that they have to jump through 
hoops to maintain the data.
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A more significant problem occurs when an entity exists in more than 
one of the subsets. For example, the entity may be both a Customer 
and a Vendor. In Customers the entity has one unique ID, while in 
Vendors they have another. In a standard construct, if we want to 
compile a report showing "Total Business Transacted" by an entity, 
we would need to identify each Unique ID assigned to the entity for 
each table we're querying. If, on the other hand, each entity (Name) 
had one single, unique ID, then it's simply a matter of joining this ID 
against all tables in question and extracting the needed data. (There's 
a much broader level of abstract which would allow us to delete a 
Name with a specific ID throughout an entire application, but it's cur-
rently beyond any RDBMS ability I'm aware of. Think of the possi-
bilities though.)

Given that Names contain all possible entities, we can create exten-
sions, or subsets of Names.

Since a Name can also be either a Customer or Vendor, or both, the 
join would occur directly with the primary table:

    Names
/ \

  Customers Vendors

Names 1:1 Customers
Names 1:1 Vendors

Notice that we also transparently end up with a 1:1 between the Cus-
tomers and Vendors record for a specific Name since they have the 
same Primary Key.

Customers 1:1 Vendors
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This is a bit early in the discussion, but note that ShipTos are in most 
cases extensions of a Customer. This deviates NFNF to some degree 
since ShipTos are both extensions of Customers (rather than sub-sets) 
as well as being subsets of Names. In other words, true NFNF would 
dictate that the ShipTos record should also exist as a Customer. How-
ever, a ShipTo may only be an attribute extension of the Customer 
rather than exist as a Customer. Do note however that a ShipTo can 
also be a Customer. This requires the ability to make a ShipTo func-
tionally dependent on the Customer (constraining a list of ShipTos to 
a specific Customer) as well as an independent Name in their own 
right. 

Names
      \

Customers
\

            ShipTos

Names 1:1 ShipTos
Customers 1:M ShipTos

 (since ShipTos are attributes of a Customer)

This is mentioned to help elucidate the complexity of the larger issue, 
and to note that this can be solved within the bounds of this construct, 
but is solved in ANF4, which as mentioned is an extension of ANF3.

The Names record has the typical columns, though you can add/sub-
tract to meet the business model needed:

name_id
name
address
city
state
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zip
phone1
phone2

(As a side note, to add functionality, we can also add another key 
“Parent ID” which will allow us to relate Names to Names to build 
recursive trees of related Organizations and People, which is actually 
an ANF1 construct. It’s fun to explore and review the possibilities, 
but we’ll stay focused on the construct at hand.)

We now need to create a Customers table. Essentially, this table is 
only going to consist of one column (that's right, one). We can add 
others for added functionality which is specifically applicable to a 
Customer, but only one column is required... and that's the Customer 
ID.

Then we add a relationship (join) between Customers and Names by 
relating the Customer ID to the Name ID. Whether this is done on the 
SQL back-end or in the middle ware will be dictated by your tool of 
choice. i.e.:

WHERE (Names.name_id = Customers.customer_id)

Now, we add a subform (master/detail) to the user interface (1:1) to 
Customers, which is essentially a replication in appearance to Names 
so that to the user there appears little difference:

customer_id 
name
address
city
state
zip
phone1
phone2
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where everything except customer_id is a subform of Customers.

Aside from the Customer ID column, none of the columns actually 
belong to the Customers table, but rather, to Names. We would then 
add those columns which were specifically functionally dependent to 
the Customer ID to the table (payment_terms, customer_type, 
sales_person, etc.).

Here's where it gets interesting. Assuming this was created appropri-
ately for your front-end of choice, you can now enter a Customer by:

1. performing a dynamic lookup (or picklist) to the Names table to 
first see if this Name exists, and if it does, simply highlighting the 
desired Name and pressing enter (or using a modal lookup form to 
retrieve an existing record, etc.).

2. if the Name doesn't currently exist, from here, leave the Customer 
ID column blank, and simply enter all the other pertinent information 
(Name, Address, etc.). Once complete, press Save.

If the second option is chosen, and your front end of choice is 
designed as such, the Customer ID should automatically be generated 
and a record entered in Customers. Now go to the Names table and 
notice that the Customer just entered exists there as well. 

Now go back to Customers and modify any portion of the informa-
tion. Notice the modification actually occurs in Names, even though 
you are working in Customers and for all intents and purposes, the 
user believes they are modifying the information in Customers, as 
well as in any of the other NFNF tables throughout the application in 
which this entity’s information exists. You can do the same with any 
NFNF table you need to add to the data-base - Vendors, Subscribers, 
Members, etc. - and the effect will be identical.
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As an added benefit, you never have to directly allow user access to 
the Names table. Its inserts and updates can occur from any of the 
NFNF tables. The only reason for direct access to the Name table is 
to delete a Name, which should occur from within a procedure any-
way, since all related tables will need to be checked for the entity’s 
existence, as well as any other business rules, such as existing tertiary 
records, etc., which will affect data-integrity, before being deleted. 

All this said, the important point is that properly constructed, the end 
result to this entire construct is that we can change an entity's address 
(or any other direct attribute), and it will appear to cascade through 
all its underlying NFNF existences through the use of relational con-
structs. If I change an address in a Names record, it will immediately 
appear as changed in all instances of that Name (Vendor, Customer, 
etc.). Also, I can insert or update any subset instance of a Name (in 
any of the related NFNF tables) and it will either create or change the 
data in the Names record. This is done through the use of 1:1 joins 
using master/detail constructs combining the power of both the front-
end as well as the underlying RDBMS. This allows column mainte-
nance of Name, Address, City, State, or Zip (or any other Name infor-
mation) to occur from any of the NFNF tables, regardless of the 
number of tables involved.

To restate, from any of these tables (Customers, Vendors, Members, 
Subscribers, etc.), a new Name can be entered or modified, and the 
result is immediately reflected in the Name record, as well as across 
the entire database (in all affected NFNF tables).

My apologies for the redundancy in pointing out some of the benefits, 
but they are points well worth repeating for clarification.

The only issues which has come up from developers who have been 
shown and employed this construct has had to with searching and 
reporting. However, these are front-end issues, are easily resolvable, 
and beyond the scope of this treatise. I find the use of de- normaliza-
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tion to shortcut development inevitably leads to greater amounts of 
redundancy in fulfilling additional business requirements as they 
arise.
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CHAPTER 6 ANF4 - Projection of  
Subsets from a Subset
This is to be a short chapter since ANF4 is simply an extension of 
ANF3, which allows us to extend the NFNF construct as deep as 
needed in addition to the breadth discussed in ANF3.

To accomplish this we only need to add a second relationship to all 
subsets of the Names subset tables. This allows us to achieve the 
same benefits obtained in ANF3 for all subset subsets, as well as val-
idate data-correctness within the subsets.

Assume the following:

Names
\
Customers

Assume we want to add a ShipTos table, which is functionally depen-
dent on Customers. What we need to do is add a Customer ID column 
to the ShipTos table to relate it to Customers and force our pick-list to 
reference Customers, and at the same time add another relationship to 
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relate the ShipTo ID to Name ID in Names. This second relationship 
allows us to create the 1:1 subform projection just as we did in ANF3 
between Customers and Names, giving us the ability to add/modify 
attributes of the Name record from ShipTos.

From here, any deeper subset of the ShipTos table follows the same 
dual-relationship rules. Assume for a moment that a ShipTo record 
can have multiple Contacts. In that event, we would create another 
table as a child to ShipTos, and create a dual 1:1 relationship to 
Names. 

This gives us:

Names
 \

Customers
\
ShipTos

\
Contacts

The relationships are:

Names 1:1 Customers
Names 1:1 ShipTos
Names 1:1 Contacts

Customers 1:M ShipTos
ShipTos 1:M Contacts

Note that even at this level, if we modify the name spelling (for 
example) in Contacts, we are really modifying the record in Names. 
In the event this entity exists anywhere else in the data-base, all 
changes will be reflected there as well since a Contact may also exist 
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in another context within the database (i.e. - a ShipTo can also be a 
Customer, Vendor, etc.)

The other possible construct which follows along similar lines is 
when we divide up a subsets into narrower subsets, which is truer to 
the NFNF model than what we’ve previously discussed. Assume we 
have Names, then Customers, then need to separate Customers into a 
Male table and a Female table (separate result tables), and then need 
to separate Male/Female tables into Professional and BlueCollar 
tables, then separate these into those with Children and NoChildren... 
all as result tables. This can be accomplished the same way as above, 
except there is no need for a ParentID column since the PK column 
for each of these tables will be the same as the parent, which origi-
nates from Names, with the abstract being the NFNF table itself.

Names
     |
Customers
/ \

   Male Female
  /     \

 MProf     MBlue       
  /     \

MPChild MPBNoChild

No matter how deep an NFNF structure is created, the same applies. 
Change the record at any level, your are really in the Names table, 
and they are carried to all levels.

I know, I know... smoke and mirrors of a kind. However, it has signif-
icant practical applications in a number of everyday scenarios, espe-
cially in Contact Management applications, and all without any 
transactional code. Reporting is simple and direct, with the subset 
identified as the table, rather than on columns in a table. Further, if a 
partition of the subset is desired as a permanent part of the applica-
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tion, yet another NFNF table can be created and easily populated for 
future reference and reporting. The applications and ramifications are 
simply far too numerous to expound on here, whether for reporting, 
picklist selection, cascading relational requirements, or for shear sim-
plicity of data maintenance.
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CHAPTER 7 ANF5 - A Non-Virtual 
Projection from Multi-
Table Joins
ANF5 delivers significant design and performance benefits to an 
application. It allows us to create abstract joins across many tables, 
and reduce redundant table constructs and the transactional code 
required to maintain those constructs. In a standard accounting appli-
cation this results in a reduction of thousands, or even tens of thou-
sands, of lines of code, as well as the elimination of several tables.

Because of its universal nature, we’ll use a typical accounting appli-
cation construct for our example. We’ll first review the larger picture, 
then select two of the Ledger tables, along with a result table and a 
view to work with as an illustration.

It is important to point out for those not involved in writing or main-
taining accounting systems, that the Journal table (often referred to as 
the “GL Subledger”) is ‘the’ central repository of information in an 
accounting system. From this table, we can trace back to any transac-
tion in any of the primary journals, write almost all General Ledger 
reports, and ascertain the correctness of the data in the system as a 
whole. It is, in short, a rather encompassing ‘result’ table. As a point 
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of interest, all the same concepts apply to an Inventory Transaction 
Log in an Inventory Control system, and all the same techniques can 
be applied that we’ll be applying to the General Ledger here.

The standard design for an accounting application encompasses four 
primary tables, two of which are multiplied by the number of “Led-
gers” contained within the application, which for the most part differ 
only in their business rules. In theory, an entire accounting applica-
tion can be written using these four tables, althought there are practi-
cal reasons for not doing so. The four primary tables are:

1. General Ledger
2. Journal (or GL Subledger)
3. Ledger tables (many - AR, AP, GJ, etc.)
4. Ledger detail tables (distribution tables to the Ledger table)

All accounting Ledgers write to the Journal table when a record is 
‘Posted’. The Journal table data is then summarized in the General 
Ledger table by GL Account number and by accounting Period. We 
may have the following accounting Ledgers, all of which post trans-
actionally to the GL Sub-ledger:

Accounts Receivable/AR Distributions
Receipts/RT Distributions 
Credit Memos/CM Distributions
Accounts Payable/AP Distributions
Payments/PT Distributions
Debit Memos/DM Distributions
General Journal/GJ Distributions

|
   (Transaction Code)

|
Journal table (GL Subledger) 

|
   (Transaction Code)
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|
General Ledger table 

When an accounting entry is posted from anyone of these journals, 
typically a number of distribution entries are made in the GL Journal. 
The transactional code required to achieve this is significant, as is the 
supporting code to facilitate changes in transactions as well as 
‘rebuild’ routines in the event of database corruption. Additional 
code is also required to summarize the Journal entries into the Gen-
eral Ledger, and to maintain those values.

What ANF5 allows us to accomplish is to eliminate all the Distribu-
tion tables, as well as all the transactional code required to post to the 
Journal table. It also provides for some real-time benefits and added 
flexibility to the end user.

What we end up with for structure, instead of the model above, is as 
follows:

Accounts Receivable (AR)
Receipts (RT)
Credit Memos (CM)
Accounts Payable (AP)
Payments (PT)
Debit Memos (DM)
General Journal (GJ)

|
Journal (GL Subledger)

|
General Ledger (GL)

Notice the lack of transactional code between these processes as well 
as the removal of all distribution tables.
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Unlike ANF3 or ANF4, this model is fully supportable on the back-
end through the use of foreign keys, triggers, and views, and less 
dependent on the front-end or middle-ware for functionality.

What is rather uncommon in this structure is that all Ledger tables are 
master tables to Journal, with Journal being on the ‘many’ side of 
those relationships. This poses some interesting challenges in the 
middle-ware since we cannot use derivations to point to a master 
table (or if we do through nested ‘if’ statements, we open the door for 
maintenance problems each time a new accounting Ledger is added).

The data definition language (DDL) for the creation of the tables we 
are going to use for this example is as follows...

CREATE TABLE "GJ"
( "fiscal_yr"     char(4) NOT NULL,

"gj_no" char(10) NOT NULL,
"journal_date"timestamp NOT NULL,
"journal_note"varchar(50) NULL,
"journal_ref" varchar(2) NOT NULL,
"period"        char(2) NOT NULL,

PRIMARY KEY (GJ_No, Journal_Ref)
)

CREATE TABLE "Journal"
( "journal_no"    char(10) NOT NULL,

"journal_note" varchar(50) NULL,
"journal_ref"   varchar(2) NOT NULL,
"period"        char(2) NOT NULL,
"fiscal_yr"     char(4) NOT NULL,
"line_no"       smallint NOT NULL,
"coa_no" char(7) NOT NULL,
"amount"        numeric(12,2) NOT NULL,

PRIMARY KEY (journal_no, journal_ref, line_no)
)
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CREATE TABLE "GL"
( "coa_no" char(7) NOT NULL,

"period"        char(2) NOT NULL,
"fiscal_yr"     char(4) NOT NULL,

PRIMARY KEY (coa_no)
)

Keep in mind that all other Ledger headers will have the same joins to 
the table “Journal” as the “GJ” table does.

The PK/FK joins between GJ and Journal are:

Journal_Ref = Journal_Ref
GJ_No = Journal_No

The reason we need Journal_Ref in Journal is because this column 
represents the parent table for this record, and therein lies the ‘data-
state’ indicator needed to achieve our abstract subset. In other words, 
the General Journal indicator for the Journal_Ref column is “GJ”. For 
Accounts Receivable it’s “AR”. If we have GJ record number 1000, 
and we have AR record number 1000, the child (Journal) table sees 
these as duplicates. However, by adding Journal_Ref we have iso-
lated the entries and resolved the duplicate. 

Journal_Ref “GJ”, GJ #1000 = GJ1000
Journal_Ref “AR, AR #1000 = AR1000 

Hence, our data-state is identifying subsets which actually exist as 
separate tables, to allow us to achieve a 1:M from each of those mas-
ter tables to a common detail table. This allows us to have as many 
parent (Ledger) tables as we need to without conflict in the Journal 
table.
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Note also that we have included the GL table here to help explain 
some of the reasons for constructing things as they are. However, the 
construct in question that we want to focus on actually exists between 
the GJ table (and all other Ledger tables) and the Journal table. The 
reason we are including the GL table is because of some of the pro-
jections which will be required in the GL table, whose values to 
accomplish those projections exist across all three tables. The PK/FK 
between Journal and GL is:

COA_No = COA_No

However, as mentioned above, to obtain some of the projections 
needed in the GL, there are also a few other ANF1 construct joins 
which exist using a Compound Index to obtain aggregates for the 
“Current Period”, “Year To Date”, and “Current Balance”. Aside 
from this aspect of the GL table, the theory, logic, and construct to 
achieve the projections in the GL table is identical to the examples in 
ANF1 and would be redundant to cover here, so after we’ve covered 
this one aspect, we’ll limit our discussion to the GJ and Journal table. 
We do however need to be aware of the requirements for these pro-
jections because we need certain values to exist in the Journal table to 
achieve the above mentioned projections.

The ANF1 projections for the GL table will require the following 
additional joins between the Journal and the GL tables. This abstract 
join allows us to project an aggregate value in the GL table for those 
transactions which exist in an account for a specific Period/Fiscal 
Year:

COA_No = COA_No
Period = Period
Fiscal_Yr = Fiscal_Yr
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And this abstract join will allow us to project an aggregate value in 
the GL table for a specific account for an entire fiscal year:

COA_No = COA_No
Fiscal_Yr = Fiscal_Yr

What’s important to notice from these ANF1 joins is the requirement 
to replicate the ‘Period’ and ‘Fiscal Year’ columns in the Journal 
table from the Ledger tables since these columns are functionally 
dependent on the Ledger tables (mostly for practical reasons). This 
will become clearer as we progress, but is important to note because 
the creation of these keys in the Journal table facilitates the abstract 
joins needed to create the aggregate projections in the GL table.

The PK/FK join between the GJ (and all Ledger tables) and the Jour-
nal table is:

Journal_Ref = Journal_Ref
GJ_No = Journal_No

This join is used strictly as a PK/FK join for integrity purposes. The 
data-entry join includes a few other columns, and can be constructed 
either in the middle-tier repository, or as a unique constraint/FK con-
struct. The latter (UC/FK) works fine in those SQL engines which 
support ‘Cascade Updates’, since any modifications to the parent 
table (GJ) will automatically carry through to the joined columns in 
the child table (Journal). The abstract join we create to achieve data-
entry purposes is as follows:

Journal_Ref = Journal_Ref
GJ_No = Journal_No
Period = Period
Fiscal_Yr = Fiscal_Yr
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Note that we have added both Period and Fiscal_Yr to the abstract 
UC/FK join as we did in the additional joins between the Journal and 
the GL tables above. The reason is that because they are part of the 
join over which the master/detail (mainform/subform) construct is 
created in the user interface form, entries or changes made to these 
columns are automatically carried to the detail (Journal) table 
because they are part of the join. Otherwise, we would have to either 
re-enter both the Period and Fiscal Year in each line item entry in the 
Journal subform table, or enforce their entry through a trigger on 
inserts and updates. By defining the abstract across these columns, 
referential integrity takes care of the entries for us.

Worth reiterating, the reason for the Journal Reference column is to 
differentiate between differing ‘Ledger header’ table entries in the 
Journal table. In this example, the Journal Reference value for the GJ 
table will always default to “GJ” for all General Journal (GJ) entries. 

So to compare the difference in logic between what we typically have 
in a standard construct, and what we now have in an abstract con-
struct we’ll walk through a logic flow.

In a standard GJ, GJ_Distribution, Journal, and GL construct is the 
following:

1. The user makes their entries in the GJ table. The entries made are 
the GJ number, Period, Fiscal Year, and an Entry Note.

2. The user then makes entries to the GJ Distribution table, which 
exists as a subform to the GJ table. In this table the user enters the GL 
Account number, Department number, and distribution Amount.

3. Once all the entries are made (to simplify we’ll skip the audit pro-
cesses here) the system posts the entries to the Journal table. The 
pseudo-code to post those entries would be as follows:
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INSERT 
INTO    Journal 
     (journal_no, coa_no, amount)
SELECT gj_no, coa_no, amount
FROM   GJ_Distribution
WHERE (posted = “N”)

We now essentially have a mirror entry of the GJ_Distribution 
records entered into the Journal table. In other words, we have a per-
manent duplication of the data. Redundant between the GJ, 
GJ_Distribution, and Journal tables.

4. The system next has to transactionally post these entries up to the 
General Ledger to reflect accurate aggregate values.

UPDATE GL
SET current_balance = current balance + amount,
SET period_balance = period_balance + amount
FROM Journal
WHERE ( Journal.coa_no = GL.coa_no
AND   Journal.period = GL.period
AND   Journal.fiscal_yr = GL.fiscal_yr 
AND   posted_gl = “N” )

The entry using that method is now complete, and is by far one of the 
simpler posting entries compared to the transactional requirements of 
the other, more complex, Ledger entries (such as Accounts Receiv-
able, Accounts Payable, etc.) where many entries to multiple 
accounts need to occur.

Contrast that with the abstract method offered through an ANF5 con-
struct:

The user makes the same entries as above through the GJ entry form, 
but the GJ_Distribution table is eliminated and the distribution entries 
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are actually made directly to the Journal table. Once the user is done 
they save the record and that’s it. There is no transactional code 
required. The entries now exist in the Journal table, and the projec-
tions for the aggregates in the GL are accomplished through the 
ANF1 constructs mentioned above.

Further, ignoring standard accounting rules for a moment, because 
the Period and Fiscal_Yr are part of the abstract join, after entry, the 
user can go back to that record in the GJ table, change the Period and/
or Fiscal_Yr, and with no reconciling transaction code, all entries and 
data are correct in both the Journal table, as well as the aggregates in 
the GL table.

We are also saved the transactional code necessary to rebuild the 
General Ledger and the Journal table in the event there is a system 
malfunction. As long as the source tables are data-correct, then all 
abstract projections are also correct.

Multiply these benefits across all journals in an accounting applica-
tion, as well as other similar constructs, and it isn’t difficult to see the 
tremendous benefits gained in performance, code and table reduction, 
code and table maintenance, and application flexibility.

As a final comment, in the actual accounting application, we’ve 
added a Division and a Department to the General Ledger COA con-
struct, which gives us a DivNo/CoaNo/DeptNo (1112222222333) pri-
mary key. This allows for an expansion of the basic accounting 
model, and for multiple Divisions to exist within the same applica-
tion. Each Division/Department combination can have its own Chart 
of Accounts, as well as its own Inventory. Many accounting systems 
don’t have the capacity to allow for both a Division and a Department 
because those systems do not utilize abstracts, or they haven’t gone to 
the coding expense of providing for a transactional means to achieve 
a tertiary join between the Ledger tables, the Ledger distribution 
tables, to the Journal table, and onto the GL table. By including the 
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Division in the abstract, we can isolate a full set of GL Account num-
bers to a specific Division and still allow for Departments within that 
Division. Admittedly, this serves as a secondary abstract layer for 
enforcing Divisional data-correctness, and tends to complicate the 
description of ANF5, but it serves our purpose because it also demon-
strates the simplicity and power of ANF5. It also demonstrates the 
ability to combine abstracts in the same construct without conflict. 

As you can hopefully now imagine, the possibilities are considerable.
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CHAPTER 8 Case Study
In an effort to expound on the power and benefits of ANF theory, following is the 
progression of design phases LedgerMaster underwent as it evolved from a stan-
dard (transactional) double-entry accounting construct, to its current abstract 
design, which essentially reduces the entire accounting application to a few 
highly active tables, and a number of ‘source’ tables, sans a great deal of transac-
tional code.The standard data-flow construct  (not an ERD) for a double-entry 
accounting application is as follows below. Please note that for simplification, 
the naming convention we are using for the accounting “Ledgers” are...
                

AR = Accounts Receivable
  CM = Credit Memos
  CR = Cash Receipts (Receipts)

AP = Accounts Payable
DM = Debit Memos
CD = Cash Distributions (Payments)
GJ = General Journal
CB = Check Books
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Standard Double-Entry Accounting Application Data-flow/Construct
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Distribution Tables

Ledger Tables
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Note: The ‘jn’ column in Journal represents the parent Ledger from 
which the transaction originated. “AR” for the AR table, etc., which 
allows us to perform ad-hoc joins for audit purposes, quick visual 
interpretations, etc.

Process flow - The user enters journal information in the respective 
ledger (AR, AP, etc.).

They then enter the distribution information in the corresponding dis-
tribution table (ARD, APD, etc.) through a master/detail construct. 
This would be the GL account number (gl#) and amount to distribute 
(amt), the total distributions of which must equal the ledger amount 
in the master table. 

When the entry is “posted”, the application will then transactionally 
post those values into the Journal table, adding a journal reference 
(jn) value as well as the journal number (jn#) which corresponds 
directly with the originating Ledger table (ie - “AR”-00001, “AP”-
99999, etc.). At this point, once a period becomes ‘current’, those 
entries in Journal corresponding with that period are then transaction-
ally aggregated into the General Ledger to obtain the YTD Balance 
and Period Balance used in current period financials.

In most accounting applications, when a given period is closed, the 
entries in the Journal are either deleted for that period, or archived to 
another table (xJournal), and the aggregates from that period are 
stored in yet another table (xGL). To simplify this study, we’ll forgo 
some of the more extraneous issues, but note that there are peripheral 
transactional requirements necessary to accommodate the standard 
construct.

The problems with this standard design are many from a software 
engineering perspective -
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1. Redundant Tables - The distribution (ARD, APD, ...) tables are 
redundant, not only to one another, but also to the Journal table since 
they all contain essentially the same information. A variation on the 
Non-First Normal Form construct mentioned earlier in this work. 
This is not necessarily true for the Ledger tables though, since each 
Ledger enforces a differing set of business rules specific to that led-
ger. However, in the last example in this chapter, we’ll see that there 
are enough similarities even in the Ledger tables, that with the right 
front-end, we can take this one final step as a further extension of 
ANF5.

2. Transactional Overhead - This can be considerable, and significant. 
So much so that in some systems, “posting” processes are relegated 
to off-hours to avoid degradation to system performance for data-
entry personnel. Even limited transactional processing requirements 
result in reduced productivity for personnel because of the wait time 
incurred while waiting on system processes to complete.

3. Data-Integrity - In a file-server environment where no “roll-back” 
capability exists, transaction processes can be interupted, resulting in 
data-integrity problems in one or more tables because of partially 
completed transactions. To overcome this in a transactional environ-
ment, additional code has to be written into posting procedures to 
allow for a quasi-rollback capability, usually requiring additional 
temp-tables, etc.

4. Data-Correctness - If modifications are desired to any of the ledger 
information once the item has been posted, additional transactional 
code has to be written and maintained to accomodate each of the 
events desired (delete,  update, etc). In other words, the application is 
not ‘dynamic’, nor can data-correctness be enforced by using tools 
available via the relational engine. Data-correctness has to be 
enforced transactionally, either through triggers or stored procedures.
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By changing the relational paradigm to utilize abstract keys, we were able to mod-
ify the construct as per the minimal ERD that follows. The data-flow is still the 
same, only the method differs.

Abstract Normal Distribution Tables - Double-Entry Accounting ERD

Ledger Tables

AR

PK jn#

jn
per
fyr
amt

CR

PK jn#

jn
per
fyr
amt

CM

PK jn#

jn
per
fyr
amt

AP

PK jn#

jn
per
fyr
amt

CD

PK jn#

jn
per
fyr
amt

DM

PK jn#

jn
per
fyr
amt

GJ

PK jn#

jn
per
fyr
amt

CB

PK jn#

jn
per
fyr
amt

GL

PK gl#

per
fyr
per_bal
ytd_bal

Journal

PK,FK1,FK2,FK3,FK4,FK5,FK6,FK7,FK8 jn#
PK,FK1,FK2,FK3,FK4,FK5,FK6,FK7,FK8 jn
PK,FK9,FK10,FK11 gl#

FK9 per
FK9,FK10 fyr

amt
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This graphic shows the true ERD for the abstract design implemented 
and working in several large installations, the largest being 125 con-
current users in a file/server environment. There are some consider-
ations here though where joins and performance are concerned. If the 
back-end doesn’t allow for the creation of  “compound, hashed” indi-
ces, then best optimization will require the use of manufactured 
abstract keys. Assuming the later is the case, the following keys 
would need to be created...

1. GL table - ytd_key = concat (gl#, fyr)
per_key = concat (gl#, fyr, per)

2. Journal - jn_key  = concat (jn, jn#)
ytd_key = concat (gl#, fyr)
per_key = concat (gl#, fyr, per)

3. Ledgers - jn_key = concat (jn, jn#)

These are all defined as “hashed” index keys since they will always 
be “exact match” joins. The joins then become as follows...

1. Ledger tables to Journal table join -

Ledger tables Journal
  jn_key =   jn_key

2. GL table to Journal table joins -

GL Journal
 ytd_key =  ytd_key

GL Journal
 per_key =  per_key
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In the General Ledger, we are abstracting two data-sets. Year to Date 
totals, and Period Totals. To accomplish that, we have to define keys 
that identify those data-states in the source table (Journal) so that we 
may aggregate those values in the GL. Hence, we define ytd_key and 
per_key.

In Journal, we are also defining the journal data-state of each row by 
combining the journal identifier (jn) with the journal reference num-
ber (jn#). Journal is the source table for both GL and the journal 
tables because we aggregate in the GL and journal tables using Jour-
nal rows as our source of those aggregates to achieve ANF1 as well 
as ANF5 constructs. 

It’s important to note that when a period is closed, the Period and Fis-
cal Year values in the GL get modified, thereby changing the join to 
the records in the Journal table to only those records that match the 
new data-state, or rather, the new Period/Fiscal Year.

Note also that the GL table can now easily exist strictly as a View, 
grouping on ‘source table’ joins to produce desired layouts, thereby 
eliminating the need for yet another table (the GL table). To the user, 
it won’t matter. 

We’ve now resolved those problems associated with the standard 
construct referred to in the first graphic above...

1. Redundant Distribution Tables - we’ve removed all the distribution 
tables (ARD, APD, etc.) as well as their redundancy to the Journal 
table. Not only does this save in transactional overhead between these 
tables, it also eliminates the possiblity of data-correctness problems 
between these tables since the distribution data now resides in only 
one table (Journal).

2. Transactional Overhead - we’ve eliminated all the transaction 
overhead associated with the previous construct. The only transaction 
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overhead remaining is to enforce the business rules specific to the 
business for which the application is designed. Much of this also 
depends on the feature-set of the front-end employeed in enforcing 
those business rules as many can be enforced via application develop-
ment restrictions. We also have no need to relegate the transactional 
processes to run in off-hours, because they no longer exist. 

3. Data-Integrity - there are no data-integrity problems associated 
with partially completed transactional code in either a file-server 
environment, or in a client-server environment, due to system failures 
or the inability to achieve true roll-back capability, because the distri-
bution data only exists in one table (Journal).

4. Data-Correctness - the data is always correct because there is no 
room for data-redundancy to occur in the distribution tables any 
longer. We’ve also removed the aggregation to the GL table via trans-
actional means, and resolved the aggregates by using either a view, or 
within the reports themselves, making all aggregates dynamic (or 
‘virtual’).

The overall benefit and effect is difficult to quantify until experi-
enced. Once setup, training, and customization is complete, Tech 
Support calls are few, and are for the most part relegated to requests 
for new features, even in a file-server environment. 

Finally, assuming the front-end of choice gives us the tools necessary, 
we can eliminate the remaining structural redundancy between the 
ledger tables. Note that unlike the data-redundancy we had between 
the previous two examples, this focus is solely on eliminating struc-
tural redundancy and allowing for a more efficient design. The bene-
fits are 1) simpler reporting constructs and 2) the ability to achieve 
yet a higher level of normalization for the construct as a whole.

To get there, we have to take a couple of mental leaps. If we treat the 
Ledger tables as ‘child’ tables....
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Ledger Tables as Child Tables

AR

PK jn#

jn
cust#
terms

CR

PK jn#

jn
cust#
ar_ref
method
pmt_ref
cust_chk#
dep#

CM

PK jn#

jn
cust#
ar_ref

AP

PK jn#

jn
vend#
vend_po#
exp_dt
due_dt
payee
terms
check#

CD

PK jn#

jn
check#
ap_ref
void

DM

PK jn#

jn
vend#
ap_ref

CB

PK jn#

jn
type
payee
returned
check#

Ledger

PK jn#
PK jn

per
fyr
jdate
posted
pdate
note1
cb#
amt

Journal

PK,FK1 jn#
PK,FK1 jn
PK,FK2,FK3,FK4 gl#

FK2 per
FK2,FK3 fyr

amt
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...and relate these to a single Ledger table on ‘jn’ and ‘jn#’, thereby 
treating the Ledger table as the ‘parent’ we can delete the redundant 
columns that exist across all Ledger tables in the previous examples. 
This possibility assumes that the user interface (front-end) allows for 
the use of ‘child tables’ in it’s construct(s). Note that we’ve essen-
tially relegated the “GJ” table to the parent ‘Ledger’ table (as there 
are only 7 child tables). When a user begins data-entry, the front-end 
then  forces them into a ‘type’ of ledger entry (AR, AP, etc), or the 
user could just ‘choose’ the type of entry they wish to make. Once the 
‘jn’ column has received an entry type (AP, AP, etc), it would ‘make 
visible’ the appropriate child table and related columns for that entry, 
and relegate the otherwise common data-entry columns to the Ledger 
table, thereby simplifying reporting, transactions, etc. To the user, 
there is little difference, though it does allow for more flexibility in 
designing the UI for the developer.

From here, we can make the final leap and consolidate all redundant 
columns across all the child tables into the Ledger table itself, and 
enforce relational integrity through abstract self-referencing joins. In 
so doing, we’ve now reduced the total construct from 18 tables to two 
tables, a view (the GL), and relegated the seperation of the specific 
ledger tables to the user interface as Forms. Again, the user notices 
little, if any, difference. However, the size of the database is reduced 
conserably, reporting is simpler, transactional code is almost non-
existant as compared to the original model, and performance benefits 
accordingly. 

In the following ERD, I’ve also included the source tables necessary 
to support the transaction tables to further expound on the model. 
Abstract Normalization : An  Advanced Concept of Relational Theory



Ledger Table Abstraction to ANF5

Ledger

PK,FK10,FK12,FK13 jn
PK,FK13 jn#

rjn
rjn#
per
fyr
jdate
pdate
ddate

FK9 cid
FK10 term
FK11 cb#

chk#
FK12 type

ref
desc
amt
void

Journal

PK,FK1 jn#
PK,FK1 jn
PK,FK2,FK3,FK4,FK5 gl#

FK2 per
FK2,FK3 fyr

amt

JTypes

PK jn
PK type

Contacts

PK cid

company
name
address
city
st
zip

Checkbooks

PK cb#

bank
lst_chk#

Terms

PK jn
PK term

G/L
View

Source Tables

COA

PK gl#

desc
FK1 type
FK1 stype
FK2 cat

CTypes

PK type
PK stype

CCategories

PK cat

Ledger (jn, jn#)  1:1 Ledger (rjn, rjn#)
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While this may appear confusing at first, know that the referential 
model is still intact, and that we’ve used multiple layers of abstrac-
tion to achieve our end result. With that in mind, trace the above 
models through this model, and it will become obvious that this is 
indeed the case. We’ve simply removed all UI aspects from our back-
end data-store, and relegated those requirements to the front-end, 
which will now overlay multiple ‘views’ (or rather, ‘forms’) over the 
data-tables. To the user, again, there is little/no difference in what 
they see, or how they interact with the application.
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CHAPTER 9 Data Normalization 
Revisited
In discussing the subject and plans for this book with peers, it was 
suggested that a brief review of data normalization would be in order, 
if only for reference purposes. This is a reprint of an article I wrote 
from a few years back, and is offered here as a review on the subject. 

Assume we take on a project in which the following columns all exist 
in a single "flat file" table. Our job is first and foremost to "normal-
ize" the data before we begin applying additional business rules.

The un-normalized data items on the inherited table are:
 
Car Serial Number
Car Year
Car Make
Car Model
Dealership Name
Dealership Location
Feature1 Name
Feature1 Description
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Feature2 Name
Feature2 Description
Feature3 Name
Feature3 Description
Feature4 Name
Feature4 Description
Feature5 Name
Feature5 Description
Feature6 Name
Feature6 Description

1. Eliminate Repeating Groups

Our first goal is to create separate tables where each set of related 
attributes can be defined as being owned by a separate primary key. 

In this step, we are concerned with groups of information. By identi-
fying and moving these groups into separate, related tables, we 
achieve "First Normal Form" (1NF). In the above table, a car may 
have many additional features, or it may not have any. Additionally, if 
we want to find out which Cars have a certain Feature associated with 
it, the search is rather awkward and cumbersome since any one of the 
Feature columns could contain the information we're looking for. 
Ultimately, we end up paging through many records, or writing a 
large "if-then" query. By achieving 1NF we can then simply search 
against one column in the Features table, defined below, to identify 
those Cars which match the criteria.
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FIRST NORMAL FORM

Cars table 
Car Serial Number --Primary Key
Car Year
Car Make
Car Model
Dealership Name
Dealership Location

Features table 
Feature Code--Primary Key
Feature Name
Feature Description

2. Eliminate Redundant Data

In the Cars table above, if you examine the data, you'll find repeating 
values:

Car# Year Make Model
1234 1995 Chrysler Cirrus
1235 1995 Chrysler New Yorker
1236 1995 Chrysler Cirrus

Besides the repeating data in the Year and Make columns, notice also 
the Model for Cars #1234 and #1236. We can eliminate this redun-
dancy by removing these attributes to a separate table.

To accomplish this, we divide the Cars table into two tables, Cars and 
car models, and retain only those attributes specific to the "primary 
Abstract Normalization : An Advanced Concept of Relational Theory 82



Data Normalization Revisited

83
key" in each, with the addition of "foreign keys" to achieve the rela-
tional structure:

Cars 
Car Serial Number--Primary Key
Car Code --Foreign Key
Dealership Name
Dealership Location

Car Models 
Car Code --Primary Key
Car Year
Car Make
Car Model

We now have under the Car Models table:

Code Year Make Model
0001 1995 Chrysler Cirrus
0002 1995 Chrysler New Yorker

and in the Cars table:

Car# Code
1234 0001
1235 0002
1236 0001

A small example, but nevertheless, when applied to a large data set, 
the results in both efficiency and size savings are significant.

 
We now have:
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SECOND NORMAL FORM

Cars 
Car Number --Primary Key
Car Code --Foriegn Key
Dealership Name
Dealership Location

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Features
Feature Code --Primary Key
Car Number --Foriegn Key
Feature Name
Feature Description

3. Eliminate Columns Which Are not Dependent On The Pri-
mary Key.

Sometimes there is a vague distinction between 2NF and 3NF, in that 
when 2NF is achieved, 3NF is also.  Take the above for example,  
Dealership Name and Dealership Location may or may not be data 
that is redundant (in accordance with 2NF) in the Cars table. If it 
were, in this case we would also achieve 3NF because in conforming 
to 2NF we would also have created a separate table for Dealerships 
based on "Data Redundancy". But for our purposes here, we'll 
assume the data is not redundant.  
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To achieve 3NF under these circumstances however, we need to 
examine the "dependency" of a column on the primary key of that 
table.  Dealership information is not dependent on the Car, as it can 
and should exist as a separate data-set on it's own.  Therefore, we 
need to remove this information to a separate table as well. We now 
have:

THIRD NORMAL FORM

Dealerships 
Dealership Code --Primary Key
Dealership Name
Dealership Location

Cars 
Car Serial Number --Primary Key
Car Code --Foreign Key
Dealership Code --Foreign Key

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Features
Feature Code --Primary Key
Car Serial Number --Foreign Key
Feature Name
Feature Description
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In achieving both 2NF and 3NF, our primary goal is to avoid update 
and delete anomolies, which we have done here.  Previously, had we 
deleted a Car, the Dealership information would have been lost as 
well.  Now, we can delete either the Dealership information, or the 
information pertaining to a Car, and the related data will be unaf-
fected unless we direct the database to perform otherwise. 

Third Normal Form satisfies most business requirements. However, if 
you wish to normalize further...

4. Isolate Independent Multiple Relationships

Tables may not contain two or more 1:N or N:M relationships that are 
not directly related.

Now it gets a bit more abstract.

Suppose I want to add an Accessories column to Features, so for 
example, a car could be red (Feature) and could come with pinstrip-
ing (Accessory). This violates 4NF in that these two attributes do not 
share a meaningful relationship. A car may be red but not have pin-
striping, or it may be red and not come with chrome mMirrors. How-
ever we need a way to represent this without storing these values 
within the same table. 

Given a Features table:

Feature Code --PK
Car Serial Number --FK
Feature Name
Feature Description

where a Feature can come with various Accessories (e.g. pinstripes, 
chrome mirrors), we could add another column so the table now has:
Abstract Normalization : An Advanced Concept of Relational Theory 86



Data Normalization Revisited

87
Features
Feature Code --PK
Car Serial Number --FK
Feature Name
Feature Description
Accessory

The problem is that more than one Accessory may be available per 
Feature which means we would have to enter a record for every 
Accessory desired and duplicate the other columns. Hence we have 
an inherent multiple relationship between Features and Accessories. 
To achieve 4nf we need to seperate the multiple relationship. To 
accomplish this, we add another table Accessories.  

Features 
Feature Code --PK
Car Serial Number --FK
Feature Name
Feature Description

Accessories  
Accessory Code --PK
Car Serial Number --FK
Accessory Description

The problem here is that it may need to be normalized to 5NF 
because we now have 'semantically related multiple relationships' 
(M:M) between Accessories, Features, and Cars. This requires add-
ing yet another table. Sticking to our example, an Accessory can 
belong to many Features, and a Feature can have many Accessories. 
The solution is to create an Accessory table (not related to Cars) and 
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an associative table to enforce business rules tying Accessories to 
Features:

Accessories
Accessory Code
Accessory Description

Features/Accessories 
Feature Code
Accessory Code

Cars/Features 
Car Code
Feature Code
Accessory Code

If properly constructed, from the Cars table, we can now select a Fea-
ture (in a Master/Detail construct), which will then determine which 
Accessories are available for that Feature in the Cars_Features table:

Car
Feature    Accessory
Feature    Accessory
Feature    Accessory
    
without having to actually type in a Feature Code and Description, 
and an Accessory Code and Description for every incidence/combi-
nation. 
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FOURTH NORMAL FORM

Dealerships
Dealership Code --Primary Key
Dealership Name
Dealership Location

Cars 
Car Serial Number --Primary Key
Car Code --Foreign Key
Dealership Code --Foreign Key

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Features
Feature Code --Primary Key
Car Serial Number --Foreign Key
Feature Name
Feature Description

Accessories
Accessory Code --Primary Key  
Car Serial Number --Foreign Key 
Accessory Description

 

5. Isolate Semantically Related Multiple Relationships

Now assume that our application will keep track of which Models are 
available in each Dealership, and which Distributor supplies Cars to 
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those Dealerships. This suggests a Distributor table which satisfies 
4NF.  Assume a law is now passed to prevent exclusive arrange-
ments; a Dealership selling any Model must offer that Model from all 
Distributors it deals with. 

In other words, if "NorthWest Auto" sells Cadillacs and wants to sell 
any "National Distributor" cars, it must sell National Distributor 
Cadillacs.  Inserts and deletes create the need for 5NF under this sce-
nario . Suppose a Dealership decides to offer three new Models. Also 
suppose that it deals with three Distributors that can supply those 
models. This will require nine new rows in the database, one for each 
Distributor/Model combination. Breaking up the table reduces the 
number of inserts to six. 

Without achieving 5NF:

Distributor Model
National Dist Cadillac
Regional Dist Cadillac
InterRegional Dist Cadillac
National Dist Scottsdale
Regional Dist Scottsdale
InterRegional Dist Scottsdale
National Dist Surburban
Regional Dist Surburban
InterRegional Dist Surburban

With 5NF:

Dealerships 
Dealership Code --Primary Key
Dealership Name
Dealership Location
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Distributors
Distributor Code --Primary Key
Distributor Name
Distributor Location
Dealership Code --Foreign Key

Dealerships_Distributors
Dealership Code --Primary Key (join)
Distributor Code --Primary Key

therefore:

Dealerships_Distributors 

Dealership Distributor
Northwest Auto National Dist
EastWest Auto Regional Dist
Southwest Auto InterRegional Dist

Dealerships_Models

Dealership Model
Northwest Auto Cadillac
EastWest Auto Scottsdale
Southwest Auto Surburban

which gives us six entries in the database versus nine entries as per 
above. (Obviously, we'd use Dealership Code, Distributor Code, and 
Model Code in the actual application instead of the names)
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FIFTH NORMAL FORM

Dealerships
Dealership Code --Primary Key
Dealership Name
Dealership Location

Distributors
Distributor Code --Primary Key
Dealership Code --Foreign Key
Distributor Name
Distributor Location

Dealerships_Distributors
Dealership Code --Primary Key (join)
Distributor Code --Primary Key

Dealerships_Models 
Dealership Code --Primary Key (join)
Car Code --Primary Key

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Cars
Car Number --Primary Key
Car Code --Foriegn Key
Dealership Code --Foreign Key
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Features
Feature Code --Primary Key
Car Number --Foriegn Key
Feature Name
Feature Description

Accessories 
Accessory Code --Primary Key  
Car Serial Number --Foreign Key
Accessory Description

The ERD (Entity Relationship Diagram) would be as follows:

DISTRIBUTORS
    |
(1:M)
    |
DEALERSHIPS_DISTRIBUTORS
    |
(M:1)
    |
DEALERSHIPS --(1:M)--DEALERSHIPS_MODELS
    | (M:1 relationship to CAR MODELS)
(1:M)
    |
CARS -(1:M)- CAR FEATURES
    | -(1:M)- ACCESSORIES
(M:1)
    |
CAR MODELS

There are other aspects to normalization, but their application is a bit 
more abstract. Essentially they involve the elimination of choice col-
umns (moving them to user modifiable lookup tables) and the elimi-
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nation of "hard coding" variables (data-dependant) within derivations 
and procedures and moving those variable values to "Constants" 
tables (data-independent).  Both are subject to opinion as to whether 
or not they can be classified as "Normalization" rules, but neverthe-
less are quite valid in their application. Last of all, there is the need to 
maintain "atomic" data values in columns.
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