
ABSTRACT NORMALIZATION

An Advanced Concept of Relational Theory

by Les Cardwell

Copyright

 -all rights reserved-

CHAPTER 1 Introduction
The basis for the theory on Abstract Normal Form (ANF) began in
1992 when I was introduced to what is now the second of the ANF
constructs. This solution solved a problem for a Manufacturing/
Accounting application, and was shared with me by a developer who
had used the construct to solve a similar business problem for a For-
tune 500 company. Through its most basic implementation, he was
able to remove the 'run-time' transactional requirements from the
order entry desk, yet maintain a 'real-time' Inventory, which was my
goal as well.

Sometime in 1995, after having expanded on the basic construct to
solve more complex database problems, I began looking for informa-
tion to expand my knowledge of the subject. As it turned out, there
was none. In September of 1996 I gave the first presentation on
"Abstract Normalization" to the International DataEase Users Asso-
ciation conference held in Wilmington Delaware. The response to
that presentation has led to ongoing requests for further elucidation,
which ultimately has led to this treatise.
Abstract Normalization : An Advanced Concept of Relational Theory 2

Introduction

3

During the development of LedgerMaster, a double-entry accounting
package written in DataEase, there was a good deal of opportunity to
press the concept to deeper implementations as clients business
requirements demanded more complex and efficient solutions. I
would say 'more complex' implementations, but the powerful reality
of ANF comes through simplification. This type of simplification
may be recognized in reductionist thought, holographic theory, or
abstract theory wherein all parts are merely subsets of the whole. At
the deepest levels of the theory it truly does represent a simplification
of the overall relational construct in much the same way as the first
five levels of data normalization do.

As an introduction, we’ll define the primary aspects of Abstract Nor-
mal Form in the first chapter. From there, we'll dive into deeper and
broader implementations until we reach its current state as I know it,
and as it is being implemented in the three-tier rewrite of LedgerMas-
ter. I'll also touch on "Non-First Normal Form" (NFNF) since it paral-
lels Abstract Normalization to a degree in some of the ANF
constructs, though NFNF requires exponential amounts of data-
redundancy depending on the number of subsets desired, while ANF
achieves the same through joins with no data redundancy. Finally, I'll
briefly re-iterate the various levels of Data Normalization from First
Normal Form to Fifth Normal Form (1NF - 5NF) in the chapter on
Normalization, mostly because others have thought it a good idea for
purposes of reference.

In conclusion, it's now my opinion that while we have in the past
modelled data in linear constructs extending to many levels of nor-
malization to resolve issues which affect the management and use of
data, we now need to consider modelling data in the structure in
which it actually exists, which is in subsets, as well as the whole set.
By expanding the definition of normalization to encompass perma-
nent subsets of data through structural enhancements, we not only
reduce the redundancy of data, but resolve redundancy at both the
construct and logic levels. We thereby improve performance expo-
Abstract Normalization : An Advanced Concept of Relational Theory

nentially, in some cases in ways which are difficult, if not impossible
to measure because its implementation allows us to eliminate partial
or whole constructs entirely.

Hopefully, this treatise will bring some formalization to the concept,
theory, constructs, and techniques that other programmers have used
almost unconsciously and informally over time, as well as the expan-
sion of those constructs.

I’d like to extend many thanks to Tonia, my wife and special other,
for her ongoing encouragement in pursuing the completion of this
treatise. To Fred Kingston for always asking me to consider the
downside in a construct from a presentation and end-user perspective.
To Joe Celko for steering me in the right direction with regard to
NFNF similarities. To Dallas Day for granting me the autonomy and
the initial means to pursue the quest. To Graham Smith, for his contri-
butions and work in validating the use of these concepts in a SQL
environment. To Phil Winkler and Debe Winkler for their support in
the development and presentation efforts. To Adrian Jones for editing
the final copy, and his work in demonstrating the validity of these
concepts in a file/server GUI environment. To all the good folks on
the Software Development Forum who provided feedback for the
first draft. And finally to all the DataEase programmers and develop-
ers throughout the world who have helped to make it possible through
their online assessments and feedback.

Note that this is where the concept stands at this time, and I think it
important to maintain the history of its development. It has become
much more defined than it was in 1992, and grows in validity and
value at each subsequent level.

Les Cardwell

(Note: this has been formatted to print as a double-sided copy, suit-
able for binding and to reduce the amount of paper required)
Abstract Normalization : An Advanced Concept of Relational Theory 4

Introduction

5
 Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 2 Abstract Normal Form
The focus of abstract normal theory is on projections of subsets, and
the elimination of redundancy through the normalization of these
subset projections, rather than the practice of denormalizing to
achieve a similar, less efficient result. Because of this, we may wish
to extend our definition of normalization beyond 5NF. Given the
results to date, it has been suggested that "Abstract Normalization"
may be a candidate for Sixth Normal Form (6NF).

While it may be that the concept as a whole does merit such consider-
ation, it might instead be portrayed as a parallel adjunct to Data Nor-
malization because of its very nature. To date, I’ve defined five levels
of Abstract Normalization which in many ways parallel the five lev-
els of Data Normalization (1NF to 5NF). Each of these levels is
broader in scope than the previous and resolves greater levels of
redundancy within each level. These constructs create what I’m
defining as Abstract Normal, or perhaps better yet, “Abstract Normal
Form” (ANF). Finally, it may also be said that ANF normalizes the
business rules in an application, since its structures and use are in fact
driven by the applications business rules.
Abstract Normalization : An Advanced Concept of Relational Theory 6

Abstract Normal Form

7

The goal of ANF is the same as any goal of normalization, which is to
eliminate redundancy in a database schema. In the case of ANF, the
result is the elimination of redundancy not only for data, but also the
elimination of redundant application structure, and the optimization
of logic execution by isolating sets of data into relational subsets.
These constructs may be seen as enhancements or extensions of nor-
malization which achieve a type of added dimensionality, and play on
the power of the relational engine. From sets of data, to subsets, to
subsets, ad infinitum, one eventually begins to see structures in holo-
graphic terms. Hopefully, software RDBMS vendors can continue to
enhance the underlying engines in ways which facilitate our ability to
capitalize on added dimensional insights as more efficient structures
are conceived.

Our objective in this chapter is to define and explore the concept of
Abstract Normalization and its application. The problem we face
without employing ANF structures is the incurrence of redundancy in
using a Primary Key relationship when asked for a projection of a
subset aggregate result or a specified subset of that relationship. This
redundancy occurs because of the unnecessary incidence in reading
irrelevant rows resulting in performance degradation. We eliminate
this redundancy through the creation of ANF structures when an
aggregate result or select subset is desired.

The heart of ANF lies in defining and utilizing an "Abstract Key"
(AK), which is a value that contains either a Primary Key (PK) or a
Foreign Key (FK) in a manner which represents the current data-state
for a row (a record), and which represents a subset of data contained
within a table as a whole. In other words, we are defining a subset of
data within a table which has meaningful consequences in achieving
a projection of that data. The cost to achieve ANF may be an extra
column and index in some RDBMSs, and a combination of keys
through the use of a compound index to achieve a subset in others.
We then apply secondary joins between tables which represent these
Abstract Normalization : An Advanced Concept of Relational Theory

subsets, rather than using a single join between two tables to create
all projections needed in a business application.

The bottom line is that ANF is about subsets and super sets, two sides
of the same coin, created through joins which eliminate redundancy
and improve efficiency. The result is that we end up with sets and
subsets of data, rather than seeing data as just a single set. Ultimately,
these sets and subsets can span many tables to achieve a result, reduc-
ing traditional transactional requirements by tens of thousands of
lines of code and making redundant many tables.

In ANF2, it's worth noting that I've been using this construct for over
five years, against intense order entry demands, with over 40,000
inventory items, and have yet to incur greater than a one second delay
in aggregating a Quantity Available value. This is across many tables
utilizing a virtual reference (lookup) to a virtual aggregate against
many virtual aggregates, which is generally considered taboo in
RDBMS design.

The reason this works is because even though we are aggregating
across many tables to create a tertiary join, the subsets are small, cre-
ating an aggregate subset which in itself is also relatively small. And
that really is the point. Performance is related to the subset, not the
set, assuming proper design techniques are utilized.

Because this is relatively new ground, I've had to invent some new
definitions so please bear with me as we progress. Hopefully you’ll
also forgive me if I repeat my definitions in the text.

Primary Key Join: that join which exists between the primary key in
a given table, and a foreign key in a related table. This defines the pri-
mary join between two tables. For Customers and Invoices, this join
would exist on the Customer ID column. This definition is necessary
because we will be creating multiple joins between tables to construct
smaller subsets.
Abstract Normalization : An Advanced Concept of Relational Theory 8

Abstract Normal Form

9

Data-state: the state of data represented by a given row according to
the business rules in an application. For example, an Invoice may be
either ‘Open’ or ‘Closed’, which represents two distinct data-states.

Source Table: that table which supplies the data to be used in the
projection.

Target Table: that table, or form in an application front-end, which
displays the projection, or results, from the source table. A target can
also exist as a query, view, or result table.

Projection: any subset representation of data contained in one or
more tables. These may be expressed as aggregates, views, subforms,
or result tables.

Virtual Projection: any projection which is the result of a calculated
variable, whether that exist in a user interface form, a middle-ware
repository, a view, or in some cases, a user interface query or report.
This may also be referred to as a Virtual Column in the text to repre-
sent its use in a middle-ware repository.

Abstract Key: a secondary key which exists on a source table, cre-
ated for the purpose of isolating smaller subsets of data. This key typ-
ically exists as either a sub-struct or super-struct of a primary or
foreign key value, and represents the current data-state of a given
row, allowing us to identify subsets from a single column. An abstract
key can also exist as a compound index across many columns which
represent the data-state of that row. The important factor is that this
key exists on a single index, regardless of the number of columns. It
could be said that the abstract key ultimately exists as an index since
both forms of creation result in an index which is the single point of
reference in isolating a subset.
Abstract Normalization : An Advanced Concept of Relational Theory

Abstract Join: the creation of a second join between two tables using
alternate keys to facilitate the desired projection in a way which elim-
inates data and logic redundancy in retrieving subsets, and allows us
to select a subset without reading the source table data. We only read
a single index to complete the projection.

Abstract Normalization: a partitioning of the primary key join
which exists between two tables, through the use of secondary and
foreign key constraints, to achieve a select subset (or abstract) based
on all possible data states which affect a defined result, or projection.

Benefits of Abstract Normalization-

1. Increased performance in:
• aggregating values from relational constructs
• projecting a subform subset through first tier constructs
• SQL Views
• selecting a subset group of records for processing in a query
• projecting a subset result table across many header tables

2. Enhanced data-integrity through the use of 'relational' rather than
'transactional' means.

This is a little more difficult to describe, but the benefits of maintain-
ing a value as a virtual projection based on an abstract construct is far
less fraught with programmatic pitfalls than maintaining it through
transactional means.

For example, if we maintain a Quantity Available in an Inventory
table transactionally, the number of ways we have to account for this
value grows with the breadth, depth, and flexibility of the system.
However, if we maintain it through an abstract construct, all we need
Abstract Normalization : An Advanced Concept of Relational Theory 10

Abstract Normal Form

11
to ensure is that the data in the source tables is correct for the projec-
tion to also be correct.

3. Elimination of redundant intermediate tables. This is best
explained in ANF3 and higher, and reaches its apex in ANF5.

4. Reduction of transaction code. Using the Inventory example in
item #2 above, if we maintain a value as a virtual projection on an
abstract construct, none of the transactional code usually necessary is
required.

5. Ability to reduce, and perhaps eliminate certain requirements to
create data-warehouses of information through the isolation of sub-
sets.

Rules of Abstract Normalization-

1. Relationships are specifically 'one way' relationships. The target
(‘one’ side) is never referred to from the source (‘many’ side). Hence,
we have no need to index the reference column in the target.

2. The target table may utilize other secondary key fields to facilitate
the projection of various subsets. The number of secondary abstract
key fields on the target (‘one’ side) is determined by the number of
data-states in question. For example, in Customers/Invoices, we may
wish to display separate subform projections in the user interface,
which represent ‘Open Invoices’ in one subform projection, and
‘Closed Invoices’ in another. In this case, unless the front-end tool
allows for scripting subform projections where-in the join occurs in
the SQL script, we would need to add two secondary key fields to
Customers to facilitate the subset joins to the abstract key in Invoices,
one secondary key in Customers for each subset desired. These fields
are not indexed, their values never change once derived, and are only
used in joins to isolate related subsets. (As a personal preference I
always append these field names with the word 'Key')
Abstract Normalization : An Advanced Concept of Relational Theory

3. The source table may utilize an indexed, concatenated abstract key,
whose value changes according to the state of the data in question, or
it may be a composite foreign key utilizing a compound index which
also represents the state of the data in the source table.

4. Since relationships are based on exact match joins, and no range
searches are ever applied to an abstract key, if available and appropri-
ate, and if the data type of the foreign key fields is text, a hash index
should be used. It’s imperative to note that all abstract joins read the
subset on a single index. In other words, the ‘select’ doesn’t read the
table data, but rather makes its selection against an index.

5. Relationships are created using either a sub-struct or a super-struct
of the primary key field in the source table, usually a super-struct
unless the primary key in the source table is a ‘smart-key’ and an
extraction can be derived based on the data structure. For example the
Inventory Item (primary key) 'R-6010-P1' might represent Oak (R-)
Traditional Rail (6010) with a 1-1/4" plow (P1). Hence we can extract
the 'R-' for all Oak items, the '6010' for all species/plows of Tradi-
tional Rail, '-P1' for all 1-1/4" plowed hand rails, or a concatenation
of any of the two of the three for unique combinations to create sub-
sets. On the other hand, we might create a super-struct key as a con-
catenation of an indicator to identify a subset, along with the primary
key. For example, Open Invoices may be identified by concatenating
an ‘O’ with the Invoice number to become ‘O99999’, which is in
essence a super-struct of the primary key.

6. Where possible, as in any relationship, it's most desirable to use
integer fields versus text or numeric string fields because integer
fields use fewer bytes and are therefore more efficient. However, note
that most keys used in creating abstracts are constructed of text fields
for intuitive purposes, and most super-struct keys of this nature use
alpha-numeric leading or trailing characters for this reason.
Abstract Normalization : An Advanced Concept of Relational Theory 12

Abstract Normal Form

13
7. The number of ideal abstract relationships is governed by:

• The need for those relationships, determined by the demand for
aggregates and/or subsets as dictated by the applications business
rules.

• The capacity of the underlying relational engine and hardware to
support the implementation.
Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 3 ANF1 - Projection of a
Single Subset
Applications -

• Aggregate projection - in a query, virtual derivation, or form event.
• Subset projection - of a user interface subform (master/detail).
• Subset projection - of a view.
• Query utilization - to increase performance.

Synopsis -

Abstract Normal Form 1 (ANF1) can, and should, exist when a subset
projection is desired from data in a single table, and is part of the per-
manent structure of the application as defined by its business rules.

We accomplish this through the use of an Abstract Join which allows
us to achieve the desired projection without reading irrelevant table
rows in retrieving the subset. This projection can come in the form of
a query, an aggregate (in a query, repository derivation, or form
Abstract Normalization : An Advanced Concept of Relational Theory 14

ANF1 - Projection of a Single Subset

15
event), a view, or a user interface subform projection where an iso-
lated subset needs to be displayed.
Achieving the subset projection efficiently requires a means of identi-
fying this subset via a single index, and a means of referencing that
subset through:
• referencing the abstract key in a query via direct reference
• referencing the abstract key in a query via a variable
• joining the key on like columns from another table

The goal in ANF is to retrieve a subset by reading a single index. All
other aspects we discuss revolve around this goal, and represent both
the means and benefits of achieving this goal.

In the case of a query or view, the query or view is the target, which
in turn displays the results.

In the case of a user interface form, where we wish to display an
aggregate, or a subform of subset data, the form (or table) is the target
since that is where the results will be displayed to the user. The joins
in this instance can be achieved using a PK/FK construct on the SQL
back-end (usually as a unique constraint/FK struct), or by using a
named relationship in the middle-ware repository.

In a query or view we can use either a variable or a direct reference to
the subset value desired. In this example, we are using the column
bal_due_key to join the value using a direct reference, where the
stated value of ‘O99999’ is the reference being joined on:

SELECT customer_name, SUM(balance_due)
FROM Invoices
WHERE bal_due_key=’O99999’
GROUP BY customer_name
Abstract Normalization : An Advanced Concept of Relational Theory

We could also use a variable to reference the abstract key:

DECLARE @ak varchar
SELECT @ak=’099999’
SELECT customer_name, SUM(balance_due)
FROM Invoices
WHERE bal_due_key=@ak
GROUP BY customer_name

Finally, we can utilize a projection on a user interface form (aggre-
gate field or subform) to project an aggregate value in a field through
a repository derivation, or to create a subset subform (master/detail)
projection which lists only those rows which are specific to the sub-
set.

To achieve the join, we need to store the subset reference value in the
target table which allows us to facilitate the join to the abstract key in
the source table. This is done through either a compound index over
multiple columns which together represent the data-state (or subset)
of that row, or through an added (indexed) column on the source table
which contains a concatenation of the foreign key and a pneumonic
representation of that row’s current data-state.

Essentially, to reiterate the definition of an abstract join, when two
tables are involved, we are creating a second join between these
tables using alternate keys to facilitate the desired projection in a way
which eliminates the reading of irrelevant rows in the source table.

We only read a single index which is created over the column
‘bal_due_key’ in Invoices:

SELECT customer_name, SUM(balance_due)
FROM Invoices, Customers
WHERE Invoices.bal_due_key=Customers.bal_due_key
GROUP BY customer_name
Abstract Normalization : An Advanced Concept of Relational Theory 16

ANF1 - Projection of a Single Subset

17
To further illustrate, in this chapter we’ll create two examples which
project a single subset.

To create the abstract key, in Example #1 we’ll extend the examples
offered above and add a column to define and represent the subset,
and in Example #2 we’ll utilize a compound index against pre-exist-
ing columns to define the subset.

Example #1 -

Objective: Create an abstract projection of only those Invoices with
outstanding balances. In this case, we want to know the ‘sum of’ all
Invoices for a Customer with a Balance Due greater or less than zero.
We’ll utilize an abstract join to eliminate the logic redundancy which
is typically inherent in performing the projection when using the pri-
mary key join between Customers and Invoices (aggregation in this
case).

For this example, we’ll need to create the following tables and popu-
late them with data.

Data-definition for tables Customers and Invoices:

CREATE TABLE Customers
(cust_id INTEGER NOT NULL PRIMARY KEY)

CREATE TABLE Invoices
(invoice_no INTEGER NOT NULL PRIMARY KEY,
 cust_id INTEGER NOT NULL,
 bal_due INTEGER NOT NULL
 bal_due_key VARCHAR NOT NULL)

We then need to populate these with data. All we need for Customers
(the ‘target’) is a single row for these examples. This row exists
Abstract Normalization : An Advanced Concept of Relational Theory

solely as a means to reference the abstract key in the source table,
which will allow us to create a projection of the desired subset in the
target table.

INSERT INTO Customers (cust_id) values (‘99999’)

Invoices is the ‘source’ table, and we need to create a relevant data-
set to facilitate the example. This stored procedure creates 100,000
Invoices, of which every 100th Invoice has a Balance Due value
which is not zero. In other words, every 100th Invoice has an amount
owing:

CREATE PROCEDURE Make_Invoices AS
DECLARE @knt integer
SELECT @knt=0
WHILE @knt<100000
 BEGIN
 SELECT @knt=@knt+1
 INSERT INTO Invoices (cust_id,bal_due,bal_due_key)
 VALUES (99999,0,'O99999')
 IF MOD(@knt,100)=0
 INSERT INTO Invoices(cust_id,bal_due,bal_due_key)

 VALUES(99999,10000,'P99999')
 COMMIT TRANSACTION
 END

If preferred, you can just use ISQL to acomplish the above and strip
out or modify the pertinent code. I create it as a stored procedure so I
can run multiple tests under varying circumstances.

Typically, Customers and Invoices are related on the Cust_ID field,
which is the primary key in the Customers table. If an aggregate pro-
jection is added to the Customer record which shows the sum of the
Invoices Balance Due column, the performance hit in deriving this
total will grow proportionally in relation to the number of Invoices
Abstract Normalization : An Advanced Concept of Relational Theory 18

ANF1 - Projection of a Single Subset

19
generated for this Customer over time. What occurs is that all the
Balance Due values for all the Invoices related to this customer based
on the primary key join are read, calculated, and added, even if that
value is zero.

Hence the query:

SELECT cust_id, SUM (balance_due)
FROM Customers, Invoices
WHERE (Customers cust_id = Invoices cust_id)
GROUP BY cust_id

which is essentially what we ask for in projecting a subform, or in an
aggregate virtual projection, will read all Invoices for each Customer
in the Customers table, as will a field derivation (virtual or non-vir-
tual) in a user interface form. If a customer has 1,000 Invoice records,
and only 25 of those records have a value in the Balance Due column,
the RDBMS will still read all 1,000 Invoice rows, adding 975 zeros
and 25 non-zero values.

Changing the query to select only those Invoices with a Balance Due
greater or less than zero may improve performance. However, it still
requires secondary evaluations to complete the selection set. In other
words, it still has to read all 1,000 Invoice records to isolate that sub-
set which only includes Invoices with a balance due not equal to zero:

SELECT cust_id, SUM (balance_due)
FROM Customers, Invoices
WHERE (Customers cust_id = Invoices cust_id
AND balance_due > 0
OR balance_due < 0)
GROUP BY cust_id

As well, neither a user interface subform nor a repository derivation
will be able to utilize a reduction of this nature (exclude all zero val-
Abstract Normalization : An Advanced Concept of Relational Theory

ues), so an exclusion of this type is only available to a query, a view,
or an event utilizing an Exec SQL statement, even if it did deliver the
results desired.

Through the use of an abstract, we can resolve this by the addition of
a column (the ‘abstract key’) which derives its value as an abstract of
an Invoice’s current ‘data-state’, and use that column to facilitate
either a join, or a reference in a query.

To achieve this, we first need to determine the possible 'states' the
data we want to aggregate or project can exist in this context. In this
case, an Invoice is either 'Paid' or 'Open'. We then need to assign an
acronym for the various data-states:

Invoice-State Indicator
 Paid = ’P’
 Open = ’O’

We can then concatenate ’P’ for Paid and ’O’ for Open with the Cus-
tomer ID (foreign key in Invoices) to create the AK (we might call
the column ‘bal_due_key’, and the index ’ak_bal_due’). Therefore an
Invoice which is open and which has a Customer ID assigned of
99999 would derive as ’O99999’ and one which is Paid would derive
as ’P99999’ (or to better utilize index trees, ‘99999O’ and ‘99999P’)
which can be enforced through form events, repository derivations, or
SQL triggers. This allows us to find all open Invoices for this cus-
tomer by requesting a join on ‘O99999’, rather than joining on
‘99999’ which would retrieve all Invoices regardless the state of the
Invoice.

Assume this Customer has 1,000 Invoices in the Invoices table, of
which 25 are ’Open’. Traditionally, as mentioned above, if we join on
the Customer ID and ask for an aggregate of Invoices Balance Due,
the RDBMS will have to read 1,000 rows to aggregate the Balance
Due column. If instead, we join on the AK (either through a second-
Abstract Normalization : An Advanced Concept of Relational Theory 20

ANF1 - Projection of a Single Subset

21
ary AK column used to create a join in Customers, or on a variable if
referenced in a query), the RDBMS will only need to read 25 rows.

These things accomplished, we can now isolate the desired subset
with a single reference:

SELECT cust_id, SUM (balance_due)
FROM Invoices, Customers
WHERE (Invoices.bal_due_key = Customers.bal_due_key)

(Note that we can create the AK through either concatenation as in
this case, or a Compound Index as in the example to follow.)

To reiterate, this is the root of ANF, a single index reference in the
creation of an abstract, or subset, projection. The most important
aspect to note is that we are now only reading a subset of the data. In
other words, to expand on the benefit, assume for a moment that a
Customer has a relatively constant open Invoice count of twenty-five
invoices at all times. The significance here is that no matter how
many closed/paid invoices this customer has in the database, whether
that be 500, 1000, or 1,000,000, the performance hit for aggregating
or projecting the balance due for the twenty five open invoices will be
relatively constant. To be concise, there is no significant degradation
in performance in maintaining this projection.

If the projection of a subset is to be in the form of a subform con-
struct, or a virtual aggregate derivation in the user interface wherein
Customers is the desired target table, then we’ll need to add a second-
ary key to the Customers table to allow us to complete the join over
the abstract key, which will default to the same data-state as the
Invoices AK when an Invoice is Open. In this example, that value
would be a concatenation of the data-state indicator for Open, and the
Cust ID (‘O999999’). This allows us the luxury of joining the two
tables via a repository relationship, or on a unique constraint, to facil-
Abstract Normalization : An Advanced Concept of Relational Theory

itate the subform projection of only those Invoices for each Customer
which are Open.

We can also reverse this key, or add another column if two subform
projections are desired, to project those Invoices which are Paid
(‘P99999’). This can also be accomplished with a SQL view or query
without the need for the creation of an additional column in Custom-
ers because of our ability to state the join criteria in SQL.

Maintenance of the AK column in Invoices can occur through any
one of a number of methods - a repository derivation, a trigger, or a
transactional statement in a stored procedure. Since we are always
maintaining this column in accordance with the Invoice’s data-state
however, a back-end trigger ensures the data-correctness of this col-
umn by validating and re-validating the data any time the record is
touched regardless of the front end tool used.

Since all joins and query references will be ‘exact match’ joins, we
can further improve performance by adding a ‘hashed index’ to this
column.

The benefits of such design proliferate as uses of well defined AK’s
are utilized in queries, reports, and projections, since they can be used
under a number of scenarios. The above example can be used to
project subforms for Open Invoices and Paid Invoices, reports for
Close AR Period, Customer Statements, etc., all with the same bene-
fit in performance against the same abstract key. The cost of adding
the column and index is far outweighed by the benefits gained.

Example #2 -

Tables: General Ledger (GL), Journal
Abstract Normalization : An Advanced Concept of Relational Theory 22

ANF1 - Projection of a Single Subset

23
Objective: Create an abstract projection of only those Journal entries
for the current period, for each GL account.

Abstract Key: Utilize a Compound Index to isolate a subset and
eliminate redundancy.

Data-definition -

CREATE TABLE GL
(gl_no INTEGER NOT NULL PRIMARY KEY,
 period INTEGER NOT NULL,
 fiscal_yr INTEGER NOT NULL)

CREATE TABLE Journal
(gl_no INTEGER NOT NULL,
 period INTEGER NOT NULL,
 fiscal_yr INTEGER NOT NULL,
 amount INTEGER NOT NULL)

(Note: for this example, we’ll ignore the PK for Journal as it would
only serve to confuse the subject at hand)

What we want to project are those transactions for a given GL
account, for a given accounting period. So, for example, we might
want to see an aggregate for each GL account, for the existing current
period in the GL. To facilitate the join, we need to add a Current Fis-
cal Year and Current Period column to isolate this subset, and ensure
through application business rules that these two columns always
derive to the Current Accounting Period during the ‘Close Period’
process in typical accounting scenarios. This resolved, we can
achieve the subset with the following query:

SELECT gl_no, SUM(amount)
FROM Journal, GL
Abstract Normalization : An Advanced Concept of Relational Theory

WHERE (GL.gl_no = Journal.gl_no
AND GL.fiscal_yr = Journal.fiscal_yr
AND GL.period = Journal.period)
GROUP BY gl_no

Again, there are a number of scenarios in which we might want to
achieve the above projection:

1. Master/Detail subforms
2. Virtual aggregates
3. SQL Views
4. Queries

In this example, since the data serves as its own abstract because the
data-state can be defined over multiple columns, we don’t need to add
a column to obtain a representation as long as the RDBMS engine
being utilized allows for the creation of a compound index. If it does,
the above query would result in a read of the ‘AK’ compound index
created across ‘gl_no’, ‘fiscal_yr’, & ‘period’, rather than reading the
table itself. If not, then another column would need to be added to the
Journal table as a concatenation of the three columns, as well as to the
GL table if a subform projection, or a virtual field projection, is
desired for the user interface. For our purposes here however, we’ll
assume the the engine does in fact allow the creation of compound
indexes, hopefully also allowing them to be hashed since we are only
interested in exact match references to that index, and that the engine
optimizer is designed well enough to take advantage of such an
index.

From here, the requirements to achieve a projection are the same as in
example #1. The only real difference is in how the abstract is created
in that we are using a compound index rather than the addition of a
column to contain the abstract, over which the join is created.
Abstract Normalization : An Advanced Concept of Relational Theory 24

ANF1 - Projection of a Single Subset

25
To project a subform of this subset, or an aggregate for the period
transactions of the subset, we would define a join between these two
tables on these three columns in the repository. The engine would
then read the compound index in projecting a subform on the user
interface, resulting in a single read of the source (Journal) joined on a
target value in the GL table.

Finally, again, there is little if any performance degredation incurred
based on the size of the Journal table as a whole. The performance hit
is in direct proportion to the size of the sub-subsetset, not the size of
the table. Therefore, assuming we have a relative constant subset for
each period, for each GL account, regardless of the overall size of the
entire set represented in the Journal table, we can maintain a great
deal of history in the Journal table. This can exist with little concern
for degredation, without the need to maintain an archive table, nor the
need to populate result tables to obtain query results which may span
both an active Journal table and an archive Journal table, resulting in
much easier query writing.
Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 4 ANF2 - Projection of
Multiple Subsets
ANF2 exists across many tables to create a tertiary subset which
spans those tables. The purpose of ANF2 is to create a subset projec-
tion which is functionally dependent on other subsets, or perhaps, a
subset of many subsets, which are projections of ANF1 constructs.

The number of applications of ANF2 is narrower than those of
ANF1, and is for the most part limited to aggregations and references
to those aggregations. However, the construct brings further normal-
ization in the projection of subsets in an application, resulting in real-
time tangible benefits to both the user and the developer.

To elaborate, we’ll be using an Inventory example which has been in
use for well over five years in a variety of environments. While this is
actually quite direct and simple once understood, there are several
aspects which need to be reviewed to fully appreciate the impact.

The basic structure and concept is the same as in ANF1, and in both
cases we can use the subset retrieved in views, master/detail situa-
tions, and in queries, albeit somewhat differently. Remember that
Abstract Normalization : An Advanced Concept of Relational Theory 26

ANF2 - Projection of Multiple Subsets

27
repositories allow the use of virtual columns, front ends utilize virtual
fields within a form, and SQL allows virtuals in a view. Each projec-
tion has its purpose and application.

What we want to achieve in this example is to identify real-time
Inventory quantities for outstanding commitments, and a real-time
Inventory Quantity Available value for each Inventory Item. Our
model allows us to accomplish this goal with little or no transactional
code.

The tables involved are:
• Inventory - target table.
• OrderDetail - source table.
• PODetail - source table.

In our example here, the Inventory table is the target table and the one
side of the relationship, and to some extent exists as a virtual table on
the front-end and in the repository (if a three-tier product is used),
because the majority of the values seen are actually virtual projec-
tions.

It is worthy to note that the same results can be had without the use of
virtual projections by forcing a column to update through the use of
triggers or procedures while still taking advantage of the abstract con-
struct. However, the availability of virtual attributes at the first or sec-
ond tier adds valuable benefits. This can be achieved in SQL without
the benefit of either a middle-tier or a front-end through the use of
views. It is also possible in some products to reduce the code required
in maintaining the abstract keys though ‘cascade updates’ which is
otherwise enforced through derivations, triggers, or stored proce-
dures. If the RDBMS allows for a ‘cascade update’ to a foreign key,
whether defined over a primary key or a unique constraint, then nei-
ther a derivation, trigger, or stored procedure may be required. Unfor-
tunately, not many engines come equipped with this option.
Abstract Normalization : An Advanced Concept of Relational Theory

Again, because ANF2 is an extension of, and functionally dependent
on ANF1, we need to identify the various ‘data-states’ in which a
record can exist to create the ANF1 constructs. This is best deter-
mined by evaluating what we want to see on screen, and what we
need to determine as the end result whether seen or not. In the Inven-
tory table itself, we might have the following columns to identify the
potential 'states' an Inventory Item can exist in. All the following
states except the first one are maintained via an abstract construct
using a virtual projection.

1. Physical Inventory - uncommitted, on the shelf, not maintained by
an abstract. This is the only column which will most likely be main-
tained transactionally, although it is possible to maintain it as a virtual
projection. When an Order or Purchase Order is posted, the Physical
Quantity gets adjusted transactionally and is accounted for only at the
time an Order, Purchase Order, or Work Order in a manufacturing
environment, is closed.

2. Customer Orders - represents open, unfilled Orders placed for Cus-
tomers by the Order Entry desk (ANF1).

3. Staged Orders - represents open, un-delivered Orders, packaged
and ready for delivery (ANF1).

4. Purchase Orders - represents items on order, not yet received
(ANF1).

5. Received - Purchase Order Items which have been received, but
not posted (ANF1).

We may also track 'Raw Materials' and 'Work In Process' using the
same logic in a Manufacturing environment, but the above ‘data-
states’ will suffice for our example.
Abstract Normalization : An Advanced Concept of Relational Theory 28

ANF2 - Projection of Multiple Subsets

29
It’s also worth noting that in some systems, the data-state will be
determined in the master table (i.e. - Orders, or PurchaseOrders in
this case), and in other systems the data-state will exist for each detail
record independently (i.e. - line items for OrderDetail and PODetail),
and finally in others they may exist in combination. This is because a
company’s business rules may state that an Order is never closed per
se, but an individual Line Item is considered closed once all quanti-
ties for that item have been delivered or received. A combination can
exist when an Order or PO allows for back-orders, but once the
Order/PO is posted, the entire transaction is closed. For our example
here, we will assume that each line item is represented independently
so we don’t get lost in functional dependencies on the master table.

Data Definition Language (DDL)

CREATE TABLE Inventory
(item VARCHAR (15) NOT NULL PRIMARY KEY,
 qty_available INTEGER NOT NULL,
 status_cl_key VARCHAR (16) NOT NULL,
 status_op_key VARCHAR (16) NOT NULL)

Note: if using SQL, add a trigger to the table to concatenate the data-
states of the key values:

status_cl_key = concat (‘C’, item)
status_op_key = concat (‘O’, item)

CREATE TABLE OrderDetail
(item VARCHAR (15) NOT NULL,
 quantity INTEGER NOT NULL,
 status VARCHAR (1) NOT NULL,
 status_key VARCHAR (16) NOT NULL)
Abstract Normalization : An Advanced Concept of Relational Theory

Note: if using SQL, add a trigger to the table to concatenate the data-
state of the key value:

status_key = concat (status, item)

CREATE TABLE PODetail
(item VARCHAR (15) NOT NULL,
 quantity INTEGER NOT NULL,
 status VARCHAR (1) NOT NULL,
 status_key VARCHAR (16) NOT NULL)

Note: if using SQL, add a trigger to the table to concatenate the data-
state of the key value:

status_key = concat (status, item)

The natural joins are as follows:

OrderDetail.item references Inventory.item
 PODetail.item references Inventory.item

To restate: the projections can be virtual columns in the repository
(three-tier) or virtual fields in the front-end user interface. Depending
on the application, a SQL View may well suffice for all the same rea-
sons.

The virtual columns/fields we can utilize in this example are:

• Open Customer Orders (‘open’)
• Staged Customer Orders (‘staged’)
• Purchase Orders (‘po_open’)
• PO Items Received (‘received’)
• Quantity Available (‘available’)
• Inventory Position (‘position’)
Abstract Normalization : An Advanced Concept of Relational Theory 30

ANF2 - Projection of Multiple Subsets

31
When we are done, the final result would be to construct a Quantity
Available and Inventory Position value in the user interface (UI)
using the following:

 Physical Inventory
 - Open Customer Orders (ANF1)
 - Staged Customer Orders (ANF1)
 + PO Items Received (ANF1)

 = Quantity Available (ANF2)

 + Open Purchase Orders (ANF1)

 = Inventory Position (ANF2)

Note that I’ve indicated to the right of each of the above the corre-
sponding ANF structure attributable to each projection. If we are now
entering an Inventory Item into an Order Detail record in Order Entry,
whether through two-tier or three-tier, we can lookup the Quantity
Available value from Order Detail to retrieve a ‘real time’ Inventory
Quantity On Hand.

In our vertical market accounting application (LedgerMaster) we do
this using virtual columns in the middle-tier/front-end, and perform
lookups from the Order Detail table against these aggregate virtual
columns as per above with a performance hit of less than one second.
This is doable because we have reduced our data-set to small subsets
(relatively speaking) and our overhead is directly related to the size of
those subsets, not the data-set as a whole.

Note that since the PK in Inventory is Item Number, our abstract key
is going to be a concatenation of a data-state indicator and the Item
Number. In our example, we can deduce that there are essentially
three data-states in which an Item can exist:
Abstract Normalization : An Advanced Concept of Relational Theory

1. Open (Open Customer Orders, Open Purchase Orders)
2. Closed or Complete (Staged, Received)
3. Posted

To keep it simple, we’ll use the first character of each data-state to
concatenate with the Item Number, hence Item Number ‘99999’
would concatenate to the following for each data-state:

1. Open = ‘O99999’
2. Closed = ‘C99999’
3. Posted = ‘P99999’

Now that we know our possible states, we can construct the Abstract
Key. In OrderDetail and PODetail we need one column each, indexed
(the 'many' side). Given an Inventory Item number of 99999, there
are three possible values for this column (which we've called
‘status_key’):

1. O99999 - Open Customer Orders, Open Purchase Orders
2. C99999 - Staged Customer Orders, Received Purchase Orders
3. P99999 - Posted Customer Orders, Posted Purchase Orders

As in ANF1, the data in the abstract keys is maintained either through
derivations, methods, triggers, or procedures, and is driven by the
application business rules. We typically use triggers since any change
made to the back-end, from any source, will result in verifying the
data-correctness of these keys. Regardless of the method chosen,
essentially what we need to enforce for the ‘status_key’ in Order
Detail and PO Detail is the following:

 if (status = “Open”, concatenate (“O”, item),
 if (status = “Closed”, concatenate (“C”, item),

if (status = “Posted”, concatenate (“P”, item), null)))
Abstract Normalization : An Advanced Concept of Relational Theory 32

ANF2 - Projection of Multiple Subsets

33
Note: if you’re doing this in SQL, use a trigger on the table to enforce
the logic through a simple concatenation for both Order Detail and
PO Detail tables.

In this example, we are using a column (‘status’) to determine a line
item’s data-state. In actual practice, that determination usually
derives from the application or company business rules based on any
one of a number of factors relating to a particular line item.

Since we are going to aggregate values based on these columns from
within the Inventory table for this example, we need to create a (non-
indexed) column for each of these possible data-state values in Inven-
tory to facilitate the abstract joins. This is only true for the target table
(the 'one' side). The reason these columns do not need to be indexed
is because we never have need to use a join from the source tables
back to the target table since only the source tables represent the sub-
set.

Hence, we created two columns in Inventory which always default to
one value, a concatenation of each identified data-state and the Item
Number:

1. O99999 - named "status_op_key"
2. C99999 - named "status_cl_key"

The source tables always contain only one column/key to identify a
subset. The reason for this is that the data value for the data-state on
the many side, or source table, changes each time the data-state
changes. The reason we need static representations on the target table
(IE-Inventory) is to facilitate a join for each possible data-state.

This done, we can now create three joins between Inventory and the
source tables:
Abstract Normalization : An Advanced Concept of Relational Theory

Entity Relationship Diagram

1. Joins between Inventory and Order Detail:

 Primary Join:
 Inventory -----------------------< Order Detail
 item item

 Abstract Joins:
 Inventory -----------------------< Order Detail
 status_op_key status_key

 Inventory -----------------------< Order Detail
 status_cl_key status_key

2. Joins between Inventory and PO Detail:

 Primary Join:
 Inventory -----------------------< PO Detail

 item item

 Abstract Joins:
 Inventory -----------------------< PO Detail
 status_op_key status_key

 Inventory -----------------------< PO Detail
 status_cl_key status_key

We can now aggregate the columns in Inventory using either deriva-
tions, methods, or views by summing the quantities for each sub-set,
and calculating our position based on those results.
Abstract Normalization : An Advanced Concept of Relational Theory 34

ANF2 - Projection of Multiple Subsets

35
To help clarify, in SQL the queries used to facilitate the virtual aggre-
gate projections (columns/fields) would be represented as follows:

Open Customer Orders:

SELECT SUM (quantity)
FROM Inventory, OrderDetail
WHERE (Inventory.status_op_key = OrderDetail.status_key)

Staged Customer Orders:

SELECT SUM (quantity)
FROM Inventory, OrderDetail
WHERE (Inventory.status_cl_key = OrderDetail.status_key)

Purchase Orders:

SELECT SUM (quantity)
FROM Inventory, PODetail
WHERE (Inventory.status_op_key = PODetail.status_key)

Received PO Items:

SELECT SUM (quantity)
FROM Inventory, PODetail
WHERE (Inventory.status_cl_key = PODetail.status_key)

These values derived, and since the Quantity On Hand is a real num-
ber, we can calculate the Quantity Available:

Quantity Available = Quantity On Hand - Open-worked - Staged

And we can calculate our Inventory Position:

Inventory Position = Quantity Available + Open Purchase Orders
Abstract Normalization : An Advanced Concept of Relational Theory

Note that we use virtual columns in the middle-ware on the Inventory
table and user interface form as our preferred calculation logic, and
enforce the algorithm through a derivation. We've experimented with
the pros and cons of various business rules here and it seems the best
all around solution because it only calculates when needed, and
doesn't add any overhead during inserts or updates to any of the
‘source’ tables.

If we represent this as a SQL view, the SQL statement would be as
follows:

create view "dba".vw_Inventory
as
select IN1.item,IN1.qty_available,
 sum(OD1.quantity) as Orders,
 sum(OD2.quantity) as Staged,
 sum(PD1.quantity) as Purchased,
 sum(PD2.quantity) as Rcvd,
 (IN1.qty_available-Orders-Staged+Rcvd) as Available,
 (Available+Purchased) as Position
 from "dba".Inventory as IN1,
 "dba".OrderDetail as OD1,
 "dba".OrderDetail as OD2,
 "dba".PODetail as PD1,
 "dba".PODetail as PD2
 where(IN1.status_op_key=OD1.status_key)
 and (IN1.status_cl_key=OD2.status_key)
 and (IN1.status_op_key=PD1.status_key)
 and (IN1.status_cl_key=PD2.status_key)
 group by IN1.item,IN1.qty_available

What occurs is that in Order Detail, when the Item Status value
changes from "O99999 to "C99999", the join is broken for Open Cus-
tomer Orders, but is engaged for Staged Customer Orders.
Abstract Normalization : An Advanced Concept of Relational Theory 36

ANF2 - Projection of Multiple Subsets

37
Hence when you ask for ‘sum of <“Open” relationship> Quantity’,
this row isn't even seen by the relationship because it no longer
matches the ‘status_op_key’ column in Inventory. Therefore it is not
aggregated, or even read. Only those rows with the value "O99999"
are seen and read by the join. On the other hand, now that the ‘status’
key has changed to “C99999”, it’s picked up by the ‘Staged’ column
because it now matches the value of the ‘status_cl_key’ column in
Inventory (also “C99999”).

If you’ve set this up using front end virtual projections, or a view as
referred to above, enter a Quantity of 100 in OrderDetail and set the
Status to “O” for Open, then go to Inventory and notice that this
amount will appear under that Inventory Item in the Open Customer
Orders field.

Now go back to OrderDetail and change the Status to “C” for Closed,
then return to Inventory if this was constructed as an application, or
re-run the Inventory view above if using ISQL, and observe that the
Open Customer Orders column has changed to zero, and the Staged
column now reflects a quantity of 100. Notice also that when the Sta-
tus is changed, the ‘status_key’ changes from “O99999” to
“C99999”. Note that the change in value reflects the change in the
join, and that the change in Customer Open Orders to zero occurs not
because we subtracted anything, but because we are excluding the
row entirely from the aggregation. Hence, there is no redundancy.

Finally, change the Order Detail Status to “P” for Posted. Notice the
‘status_key’ changes to “P99999”. If the Inventory Quantity On
Hand column was driven by an abstract construct, this event would
decrease the value in that column by 100. However, as mentioned
above, we usually handle the physical quantity transactionally when
an Order is posted. Hence, we would subtract 100 from the Quantity
On Hand value procedurally.
Abstract Normalization : An Advanced Concept of Relational Theory

Some of the benefits derived are:

1. No transactional code is required to maintain any of the aggregate
columns (Open Customer Orders, Staged Orders, Received, Quantity
Available, etc.).

2. In the event of a system crash during a posting procedure, all
aggregates and their functionally dependent (FD) columns will still
be data-correct. If we were updating the Inventory aggregates using
transactional means, we'd have to run an aggregate cleanup to obtain
an accurate Quantity Available value.

3. It overcomes the need to account for every possible addition/sub-
traction from either an aggregate column in Inventory or one of it's
functionally dependent columns (Quantity Available) when inserting/
updating/deleting rows in any of the 'source' tables. This is multiplied
considerably when the full Inventory feature set and all the function-
ally dependent columns are taken into account and we begin to
account for:

• Just In Time
• Turnings/Earnings
• Short Percentages
• Period Sold Quantities
• Reorder Quantities
• Economic Reorder Quantities
• Reorder Points
• Maximum Inventory

which is even more significant when considering that:

• Work In Process
• Raw Materials Committed
Abstract Normalization : An Advanced Concept of Relational Theory 38

ANF2 - Projection of Multiple Subsets

39

can also be accounted for using these same constructs.

All these constructs are maintained through an abstract, or are func-
tionally dependent on an abstract derived column. Once understood
and applied, the amount of transactional code which can be elimi-
nated becomes significant. Everything considered, the abstracts used
against this Inventory example alone result in an overall conservative
reduction of some 4-5,000 lines of code in our application as a whole.
If the abstract keys are correct in the source tables, and the data and
indexes aren't corrupt, then all functionally dependent constructs in
Inventory are correct. No guessing, no clean-up procedures, and no
test procedures are needed to ensure the aggregate data is correct.

In our experience, the Inventory example has been in place since '93
in many enterprise locations with no degradation in performance due
to increased data size, and has never been data-incorrect as long as
the underlying source data is correct, simply because the values are
maintained relationally versus transactionally.

To clarify the above, to maintain the values “relationally” means that
the logic is enforced through the power of a join by way of a deriva-
tion, view, subform, or any other virtual relational projection.

To enforce the values “transactionally” means that the logic is
enforced through procedural code, usually to update non-virtual pro-
jections.

It’s somewhat redundant, but to explain further, if we didn't use
abstracts to track the various subsets representing committed and
pending inventory, we'd have to trace every incident wherein a given
subset is affected and add transactional code to the insert/update/
delete process to affect the value of that subset in Inventory. Using
abstracts, we rarely need any transactional code to maintain the con-
struct. The only time it's needed is if we create an electronic trail (i.e.
Abstract Normalization : An Advanced Concept of Relational Theory

paper trail) of back-orders for example, and actually enter a new
Order for the back-ordered items. In this case, we might need to
ensure the key has derived correctly for the new Order since some
engines might not force a recalculation at the derivation level in a
batch insert, especially if there's a functionally dependent reference to
a Master table. Worse case, our focus is simply on the data-correct-
ness of the underlying table. The abstract will take care of the value
of the aggregate projection automatically (or relationally) if the
abstract key is data-correct.

As an example, if we were maintaining each category transactionally,
when a Customer Order is placed, we'd have to increment the Open
Customer Order column in Inventory. If an order is voided, we'd have
to check for its status, and if it’s still at the Open Order stage, we have
to decrement this value. If an Order is modified, we'd again have to
check its status, and either increment or decrement this value. As
well, we'd have to trace for any indirect modifications to Orders
which may affect this value from other procedures. Every time we
wrote a procedure which affected either Inventory or Customer
Orders, we'd have to review and be aware of any impact our code
may have on this value (as well as 'Staged'). Using an abstract, we
don't care... it doesn't matter. As long as the state of the Order Detail
record is correct, then the abstract key will automatically be correct
because it is functionally dependent on the state. Hence, we could
affect changes to the Order from any number of procedures, and
never have to touch the Open Customer Order column in Inventory
transactionally. It would simply derive to the correct value because of
the abstract construct. Multiply this across all the subsets represented
in the Inventory table and the difference in complexity, amount of
code, and potential for programmer error declines considerably.
Abstract Normalization : An Advanced Concept of Relational Theory 40

ANF2 - Projection of Multiple Subsets

41
 Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 5 ANF3 - Projection of
Subsets from a Set
ANF3 deals with whole tables as subsets and resolves the redundancy
required to maintain Non-First Normal Form (NFNF) structures at
the first level. ANF4 is an extension to ANF3 and resolves NFNF
structures beyond the first level. There are some front-end require-
ments to enhance the method, but the ERD remains the same regard-
less.

Until this point, most of the explorations into the various levels of
abstracts had centered around secondary, tertiary, and foreign keys as
they relate or 'join' one table to another. However, an ongoing issue
came to the forefront which necessitated an approach to solve a prob-
lem which exists in many applications wherein a quasi-NFNF con-
struct exists in an inefficient (non-normalized) form, whether
recognized or not. This scenario is recognizable by most application
programmers as redundant name/address constructs.

Before we get to the issues surrounding the abstract keys required in
ANF3, lets expand on it by further exploring the issue at hand from a
broader perspective.
Abstract Normalization : An Advanced Concept of Relational Theory 42

ANF3 - Projection of Subsets from a Set

43
In many applications, we find several tables which are really
attributes of Names, whether they be People or Organizations.
Admittedly, Names are atomically separated into Organizations and
People, however the business rules for most Organizations are such
that the unique attribute is actually a combination of both the Organi-
zation and a Person. Ultimately, we can construct this in a number of
different ways. However, even if we break Names down into Organi-
zations and People (abstracts of Names, or perhaps more appropri-
ately it would be named Entities, but we'll use "Names" for this
example), the reality is that an Organization as well as a Name can
exist as a Customer, Vendor, Shipper, etc. granting Names the privi-
lege of being at the top of the heap. i.e.:

 Names
 / \

 Organizations People

Some examples of these abstract (subset) tables are:

• Customers
• Vendors
• Prospects
• Shippers
• ShipTo's
• Buyers
• Sellers
• Members
• Subscribers
• Dealers
Abstract Normalization : An Advanced Concept of Relational Theory

It’s important to note that all these are really attributes of Names
since each is made up of the same attributes both at a data level as
well as a meta-data level. Whether these exist in a single table or not
is irrelevant in the higher aspect because at an abstract level the table
Names exists either in form or as an extrapolation.

One of the benefits of using NFNF constructs is the elimination of
null value (or blank) columns because each NFNF construct only
contains those columns which are functionally dependent on that sub-
set table. For example, Customers has column requirements not
needed in Vendors, and vice versa. If we didn't employ a NFNF struc-
ture, then a Names record which existed as a Customer, but not as a
Vendor, would leave the Vendor information columns blank, and we'd
have a large number of null columns, increasing for each NFNF sub-
set we might try to include in the single table.

The problem occurs when an entity record (such as a company, orga-
nization, or person) exists across many tables. Probably the biggest
complaint comes in the form of "address management" when an
entity moves or in some way alters a record attribute such as a change
in address or phone number. For every change made, every table
where the entity exists has to be updated. Since each table most likely
has its own unique (primary) key which is unique to that table, there
is no effective way to resolve this one issue without modifying the
underlying structure.

As well, even when a virtual projection is used to create a similar
construct to the one we are creating here (we’ll be using a subform
master/detail with a 1:1 projection to allow us to edit/enter Names
from any of the sub-set tables, which a virtual projection doesn’t
allow) the biggest complaint from users is that they may not have
access to the parent Names table, or that they have to jump through
hoops to maintain the data.
Abstract Normalization : An Advanced Concept of Relational Theory 44

ANF3 - Projection of Subsets from a Set

45
A more significant problem occurs when an entity exists in more than
one of the subsets. For example, the entity may be both a Customer
and a Vendor. In Customers the entity has one unique ID, while in
Vendors they have another. In a standard construct, if we want to
compile a report showing "Total Business Transacted" by an entity,
we would need to identify each Unique ID assigned to the entity for
each table we're querying. If, on the other hand, each entity (Name)
had one single, unique ID, then it's simply a matter of joining this ID
against all tables in question and extracting the needed data. (There's
a much broader level of abstract which would allow us to delete a
Name with a specific ID throughout an entire application, but it's cur-
rently beyond any RDBMS ability I'm aware of. Think of the possi-
bilities though.)

Given that Names contain all possible entities, we can create exten-
sions, or subsets of Names.

Since a Name can also be either a Customer or Vendor, or both, the
join would occur directly with the primary table:

 Names
/ \

 Customers Vendors

Names 1:1 Customers
Names 1:1 Vendors

Notice that we also transparently end up with a 1:1 between the Cus-
tomers and Vendors record for a specific Name since they have the
same Primary Key.

Customers 1:1 Vendors
Abstract Normalization : An Advanced Concept of Relational Theory

This is a bit early in the discussion, but note that ShipTos are in most
cases extensions of a Customer. This deviates NFNF to some degree
since ShipTos are both extensions of Customers (rather than sub-sets)
as well as being subsets of Names. In other words, true NFNF would
dictate that the ShipTos record should also exist as a Customer. How-
ever, a ShipTo may only be an attribute extension of the Customer
rather than exist as a Customer. Do note however that a ShipTo can
also be a Customer. This requires the ability to make a ShipTo func-
tionally dependent on the Customer (constraining a list of ShipTos to
a specific Customer) as well as an independent Name in their own
right.

Names
 \

Customers
\

 ShipTos

Names 1:1 ShipTos
Customers 1:M ShipTos

 (since ShipTos are attributes of a Customer)

This is mentioned to help elucidate the complexity of the larger issue,
and to note that this can be solved within the bounds of this construct,
but is solved in ANF4, which as mentioned is an extension of ANF3.

The Names record has the typical columns, though you can add/sub-
tract to meet the business model needed:

name_id
name
address
city
state
Abstract Normalization : An Advanced Concept of Relational Theory 46

ANF3 - Projection of Subsets from a Set

47
zip
phone1
phone2

(As a side note, to add functionality, we can also add another key
“Parent ID” which will allow us to relate Names to Names to build
recursive trees of related Organizations and People, which is actually
an ANF1 construct. It’s fun to explore and review the possibilities,
but we’ll stay focused on the construct at hand.)

We now need to create a Customers table. Essentially, this table is
only going to consist of one column (that's right, one). We can add
others for added functionality which is specifically applicable to a
Customer, but only one column is required... and that's the Customer
ID.

Then we add a relationship (join) between Customers and Names by
relating the Customer ID to the Name ID. Whether this is done on the
SQL back-end or in the middle ware will be dictated by your tool of
choice. i.e.:

WHERE (Names.name_id = Customers.customer_id)

Now, we add a subform (master/detail) to the user interface (1:1) to
Customers, which is essentially a replication in appearance to Names
so that to the user there appears little difference:

customer_id
name
address
city
state
zip
phone1
phone2
Abstract Normalization : An Advanced Concept of Relational Theory

where everything except customer_id is a subform of Customers.

Aside from the Customer ID column, none of the columns actually
belong to the Customers table, but rather, to Names. We would then
add those columns which were specifically functionally dependent to
the Customer ID to the table (payment_terms, customer_type,
sales_person, etc.).

Here's where it gets interesting. Assuming this was created appropri-
ately for your front-end of choice, you can now enter a Customer by:

1. performing a dynamic lookup (or picklist) to the Names table to
first see if this Name exists, and if it does, simply highlighting the
desired Name and pressing enter (or using a modal lookup form to
retrieve an existing record, etc.).

2. if the Name doesn't currently exist, from here, leave the Customer
ID column blank, and simply enter all the other pertinent information
(Name, Address, etc.). Once complete, press Save.

If the second option is chosen, and your front end of choice is
designed as such, the Customer ID should automatically be generated
and a record entered in Customers. Now go to the Names table and
notice that the Customer just entered exists there as well.

Now go back to Customers and modify any portion of the informa-
tion. Notice the modification actually occurs in Names, even though
you are working in Customers and for all intents and purposes, the
user believes they are modifying the information in Customers, as
well as in any of the other NFNF tables throughout the application in
which this entity’s information exists. You can do the same with any
NFNF table you need to add to the data-base - Vendors, Subscribers,
Members, etc. - and the effect will be identical.
Abstract Normalization : An Advanced Concept of Relational Theory 48

ANF3 - Projection of Subsets from a Set

49
As an added benefit, you never have to directly allow user access to
the Names table. Its inserts and updates can occur from any of the
NFNF tables. The only reason for direct access to the Name table is
to delete a Name, which should occur from within a procedure any-
way, since all related tables will need to be checked for the entity’s
existence, as well as any other business rules, such as existing tertiary
records, etc., which will affect data-integrity, before being deleted.

All this said, the important point is that properly constructed, the end
result to this entire construct is that we can change an entity's address
(or any other direct attribute), and it will appear to cascade through
all its underlying NFNF existences through the use of relational con-
structs. If I change an address in a Names record, it will immediately
appear as changed in all instances of that Name (Vendor, Customer,
etc.). Also, I can insert or update any subset instance of a Name (in
any of the related NFNF tables) and it will either create or change the
data in the Names record. This is done through the use of 1:1 joins
using master/detail constructs combining the power of both the front-
end as well as the underlying RDBMS. This allows column mainte-
nance of Name, Address, City, State, or Zip (or any other Name infor-
mation) to occur from any of the NFNF tables, regardless of the
number of tables involved.

To restate, from any of these tables (Customers, Vendors, Members,
Subscribers, etc.), a new Name can be entered or modified, and the
result is immediately reflected in the Name record, as well as across
the entire database (in all affected NFNF tables).

My apologies for the redundancy in pointing out some of the benefits,
but they are points well worth repeating for clarification.

The only issues which has come up from developers who have been
shown and employed this construct has had to with searching and
reporting. However, these are front-end issues, are easily resolvable,
and beyond the scope of this treatise. I find the use of de- normaliza-
Abstract Normalization : An Advanced Concept of Relational Theory

tion to shortcut development inevitably leads to greater amounts of
redundancy in fulfilling additional business requirements as they
arise.
Abstract Normalization : An Advanced Concept of Relational Theory 50

ANF3 - Projection of Subsets from a Set

51
 Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 6 ANF4 - Projection of
Subsets from a Subset
This is to be a short chapter since ANF4 is simply an extension of
ANF3, which allows us to extend the NFNF construct as deep as
needed in addition to the breadth discussed in ANF3.

To accomplish this we only need to add a second relationship to all
subsets of the Names subset tables. This allows us to achieve the
same benefits obtained in ANF3 for all subset subsets, as well as val-
idate data-correctness within the subsets.

Assume the following:

Names
\
Customers

Assume we want to add a ShipTos table, which is functionally depen-
dent on Customers. What we need to do is add a Customer ID column
to the ShipTos table to relate it to Customers and force our pick-list to
reference Customers, and at the same time add another relationship to
Abstract Normalization : An Advanced Concept of Relational Theory 52

ANF4 - Projection of Subsets from a Subset

53
relate the ShipTo ID to Name ID in Names. This second relationship
allows us to create the 1:1 subform projection just as we did in ANF3
between Customers and Names, giving us the ability to add/modify
attributes of the Name record from ShipTos.

From here, any deeper subset of the ShipTos table follows the same
dual-relationship rules. Assume for a moment that a ShipTo record
can have multiple Contacts. In that event, we would create another
table as a child to ShipTos, and create a dual 1:1 relationship to
Names.

This gives us:

Names
 \

Customers
\
ShipTos

\
Contacts

The relationships are:

Names 1:1 Customers
Names 1:1 ShipTos
Names 1:1 Contacts

Customers 1:M ShipTos
ShipTos 1:M Contacts

Note that even at this level, if we modify the name spelling (for
example) in Contacts, we are really modifying the record in Names.
In the event this entity exists anywhere else in the data-base, all
changes will be reflected there as well since a Contact may also exist
Abstract Normalization : An Advanced Concept of Relational Theory

in another context within the database (i.e. - a ShipTo can also be a
Customer, Vendor, etc.)

The other possible construct which follows along similar lines is
when we divide up a subsets into narrower subsets, which is truer to
the NFNF model than what we’ve previously discussed. Assume we
have Names, then Customers, then need to separate Customers into a
Male table and a Female table (separate result tables), and then need
to separate Male/Female tables into Professional and BlueCollar
tables, then separate these into those with Children and NoChildren...
all as result tables. This can be accomplished the same way as above,
except there is no need for a ParentID column since the PK column
for each of these tables will be the same as the parent, which origi-
nates from Names, with the abstract being the NFNF table itself.

Names
 |
Customers
/ \

 Male Female
 / \

 MProf MBlue
 / \

MPChild MPBNoChild

No matter how deep an NFNF structure is created, the same applies.
Change the record at any level, your are really in the Names table,
and they are carried to all levels.

I know, I know... smoke and mirrors of a kind. However, it has signif-
icant practical applications in a number of everyday scenarios, espe-
cially in Contact Management applications, and all without any
transactional code. Reporting is simple and direct, with the subset
identified as the table, rather than on columns in a table. Further, if a
partition of the subset is desired as a permanent part of the applica-
Abstract Normalization : An Advanced Concept of Relational Theory 54

ANF4 - Projection of Subsets from a Subset

55
tion, yet another NFNF table can be created and easily populated for
future reference and reporting. The applications and ramifications are
simply far too numerous to expound on here, whether for reporting,
picklist selection, cascading relational requirements, or for shear sim-
plicity of data maintenance.
Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 7 ANF5 - A Non-Virtual
Projection from Multi-
Table Joins
ANF5 delivers significant design and performance benefits to an
application. It allows us to create abstract joins across many tables,
and reduce redundant table constructs and the transactional code
required to maintain those constructs. In a standard accounting appli-
cation this results in a reduction of thousands, or even tens of thou-
sands, of lines of code, as well as the elimination of several tables.

Because of its universal nature, we’ll use a typical accounting appli-
cation construct for our example. We’ll first review the larger picture,
then select two of the Ledger tables, along with a result table and a
view to work with as an illustration.

It is important to point out for those not involved in writing or main-
taining accounting systems, that the Journal table (often referred to as
the “GL Subledger”) is ‘the’ central repository of information in an
accounting system. From this table, we can trace back to any transac-
tion in any of the primary journals, write almost all General Ledger
reports, and ascertain the correctness of the data in the system as a
whole. It is, in short, a rather encompassing ‘result’ table. As a point
Abstract Normalization : An Advanced Concept of Relational Theory 56

ANF5 - A Non-Virtual Projection from Multi-Table Joins

57
of interest, all the same concepts apply to an Inventory Transaction
Log in an Inventory Control system, and all the same techniques can
be applied that we’ll be applying to the General Ledger here.

The standard design for an accounting application encompasses four
primary tables, two of which are multiplied by the number of “Led-
gers” contained within the application, which for the most part differ
only in their business rules. In theory, an entire accounting applica-
tion can be written using these four tables, althought there are practi-
cal reasons for not doing so. The four primary tables are:

1. General Ledger
2. Journal (or GL Subledger)
3. Ledger tables (many - AR, AP, GJ, etc.)
4. Ledger detail tables (distribution tables to the Ledger table)

All accounting Ledgers write to the Journal table when a record is
‘Posted’. The Journal table data is then summarized in the General
Ledger table by GL Account number and by accounting Period. We
may have the following accounting Ledgers, all of which post trans-
actionally to the GL Sub-ledger:

Accounts Receivable/AR Distributions
Receipts/RT Distributions
Credit Memos/CM Distributions
Accounts Payable/AP Distributions
Payments/PT Distributions
Debit Memos/DM Distributions
General Journal/GJ Distributions

|
 (Transaction Code)

|
Journal table (GL Subledger)

|
 (Transaction Code)
Abstract Normalization : An Advanced Concept of Relational Theory

|
General Ledger table

When an accounting entry is posted from anyone of these journals,
typically a number of distribution entries are made in the GL Journal.
The transactional code required to achieve this is significant, as is the
supporting code to facilitate changes in transactions as well as
‘rebuild’ routines in the event of database corruption. Additional
code is also required to summarize the Journal entries into the Gen-
eral Ledger, and to maintain those values.

What ANF5 allows us to accomplish is to eliminate all the Distribu-
tion tables, as well as all the transactional code required to post to the
Journal table. It also provides for some real-time benefits and added
flexibility to the end user.

What we end up with for structure, instead of the model above, is as
follows:

Accounts Receivable (AR)
Receipts (RT)
Credit Memos (CM)
Accounts Payable (AP)
Payments (PT)
Debit Memos (DM)
General Journal (GJ)

|
Journal (GL Subledger)

|
General Ledger (GL)

Notice the lack of transactional code between these processes as well
as the removal of all distribution tables.
Abstract Normalization : An Advanced Concept of Relational Theory 58

ANF5 - A Non-Virtual Projection from Multi-Table Joins

59
Unlike ANF3 or ANF4, this model is fully supportable on the back-
end through the use of foreign keys, triggers, and views, and less
dependent on the front-end or middle-ware for functionality.

What is rather uncommon in this structure is that all Ledger tables are
master tables to Journal, with Journal being on the ‘many’ side of
those relationships. This poses some interesting challenges in the
middle-ware since we cannot use derivations to point to a master
table (or if we do through nested ‘if’ statements, we open the door for
maintenance problems each time a new accounting Ledger is added).

The data definition language (DDL) for the creation of the tables we
are going to use for this example is as follows...

CREATE TABLE "GJ"
("fiscal_yr" char(4) NOT NULL,

"gj_no" char(10) NOT NULL,
"journal_date"timestamp NOT NULL,
"journal_note"varchar(50) NULL,
"journal_ref" varchar(2) NOT NULL,
"period" char(2) NOT NULL,

PRIMARY KEY (GJ_No, Journal_Ref)
)

CREATE TABLE "Journal"
("journal_no" char(10) NOT NULL,

"journal_note" varchar(50) NULL,
"journal_ref" varchar(2) NOT NULL,
"period" char(2) NOT NULL,
"fiscal_yr" char(4) NOT NULL,
"line_no" smallint NOT NULL,
"coa_no" char(7) NOT NULL,
"amount" numeric(12,2) NOT NULL,

PRIMARY KEY (journal_no, journal_ref, line_no)
)

Abstract Normalization : An Advanced Concept of Relational Theory

CREATE TABLE "GL"
("coa_no" char(7) NOT NULL,

"period" char(2) NOT NULL,
"fiscal_yr" char(4) NOT NULL,

PRIMARY KEY (coa_no)
)

Keep in mind that all other Ledger headers will have the same joins to
the table “Journal” as the “GJ” table does.

The PK/FK joins between GJ and Journal are:

Journal_Ref = Journal_Ref
GJ_No = Journal_No

The reason we need Journal_Ref in Journal is because this column
represents the parent table for this record, and therein lies the ‘data-
state’ indicator needed to achieve our abstract subset. In other words,
the General Journal indicator for the Journal_Ref column is “GJ”. For
Accounts Receivable it’s “AR”. If we have GJ record number 1000,
and we have AR record number 1000, the child (Journal) table sees
these as duplicates. However, by adding Journal_Ref we have iso-
lated the entries and resolved the duplicate.

Journal_Ref “GJ”, GJ #1000 = GJ1000
Journal_Ref “AR, AR #1000 = AR1000

Hence, our data-state is identifying subsets which actually exist as
separate tables, to allow us to achieve a 1:M from each of those mas-
ter tables to a common detail table. This allows us to have as many
parent (Ledger) tables as we need to without conflict in the Journal
table.
Abstract Normalization : An Advanced Concept of Relational Theory 60

ANF5 - A Non-Virtual Projection from Multi-Table Joins

61
Note also that we have included the GL table here to help explain
some of the reasons for constructing things as they are. However, the
construct in question that we want to focus on actually exists between
the GJ table (and all other Ledger tables) and the Journal table. The
reason we are including the GL table is because of some of the pro-
jections which will be required in the GL table, whose values to
accomplish those projections exist across all three tables. The PK/FK
between Journal and GL is:

COA_No = COA_No

However, as mentioned above, to obtain some of the projections
needed in the GL, there are also a few other ANF1 construct joins
which exist using a Compound Index to obtain aggregates for the
“Current Period”, “Year To Date”, and “Current Balance”. Aside
from this aspect of the GL table, the theory, logic, and construct to
achieve the projections in the GL table is identical to the examples in
ANF1 and would be redundant to cover here, so after we’ve covered
this one aspect, we’ll limit our discussion to the GJ and Journal table.
We do however need to be aware of the requirements for these pro-
jections because we need certain values to exist in the Journal table to
achieve the above mentioned projections.

The ANF1 projections for the GL table will require the following
additional joins between the Journal and the GL tables. This abstract
join allows us to project an aggregate value in the GL table for those
transactions which exist in an account for a specific Period/Fiscal
Year:

COA_No = COA_No
Period = Period
Fiscal_Yr = Fiscal_Yr
Abstract Normalization : An Advanced Concept of Relational Theory

And this abstract join will allow us to project an aggregate value in
the GL table for a specific account for an entire fiscal year:

COA_No = COA_No
Fiscal_Yr = Fiscal_Yr

What’s important to notice from these ANF1 joins is the requirement
to replicate the ‘Period’ and ‘Fiscal Year’ columns in the Journal
table from the Ledger tables since these columns are functionally
dependent on the Ledger tables (mostly for practical reasons). This
will become clearer as we progress, but is important to note because
the creation of these keys in the Journal table facilitates the abstract
joins needed to create the aggregate projections in the GL table.

The PK/FK join between the GJ (and all Ledger tables) and the Jour-
nal table is:

Journal_Ref = Journal_Ref
GJ_No = Journal_No

This join is used strictly as a PK/FK join for integrity purposes. The
data-entry join includes a few other columns, and can be constructed
either in the middle-tier repository, or as a unique constraint/FK con-
struct. The latter (UC/FK) works fine in those SQL engines which
support ‘Cascade Updates’, since any modifications to the parent
table (GJ) will automatically carry through to the joined columns in
the child table (Journal). The abstract join we create to achieve data-
entry purposes is as follows:

Journal_Ref = Journal_Ref
GJ_No = Journal_No
Period = Period
Fiscal_Yr = Fiscal_Yr
Abstract Normalization : An Advanced Concept of Relational Theory 62

ANF5 - A Non-Virtual Projection from Multi-Table Joins

63
Note that we have added both Period and Fiscal_Yr to the abstract
UC/FK join as we did in the additional joins between the Journal and
the GL tables above. The reason is that because they are part of the
join over which the master/detail (mainform/subform) construct is
created in the user interface form, entries or changes made to these
columns are automatically carried to the detail (Journal) table
because they are part of the join. Otherwise, we would have to either
re-enter both the Period and Fiscal Year in each line item entry in the
Journal subform table, or enforce their entry through a trigger on
inserts and updates. By defining the abstract across these columns,
referential integrity takes care of the entries for us.

Worth reiterating, the reason for the Journal Reference column is to
differentiate between differing ‘Ledger header’ table entries in the
Journal table. In this example, the Journal Reference value for the GJ
table will always default to “GJ” for all General Journal (GJ) entries.

So to compare the difference in logic between what we typically have
in a standard construct, and what we now have in an abstract con-
struct we’ll walk through a logic flow.

In a standard GJ, GJ_Distribution, Journal, and GL construct is the
following:

1. The user makes their entries in the GJ table. The entries made are
the GJ number, Period, Fiscal Year, and an Entry Note.

2. The user then makes entries to the GJ Distribution table, which
exists as a subform to the GJ table. In this table the user enters the GL
Account number, Department number, and distribution Amount.

3. Once all the entries are made (to simplify we’ll skip the audit pro-
cesses here) the system posts the entries to the Journal table. The
pseudo-code to post those entries would be as follows:
Abstract Normalization : An Advanced Concept of Relational Theory

INSERT
INTO Journal
 (journal_no, coa_no, amount)
SELECT gj_no, coa_no, amount
FROM GJ_Distribution
WHERE (posted = “N”)

We now essentially have a mirror entry of the GJ_Distribution
records entered into the Journal table. In other words, we have a per-
manent duplication of the data. Redundant between the GJ,
GJ_Distribution, and Journal tables.

4. The system next has to transactionally post these entries up to the
General Ledger to reflect accurate aggregate values.

UPDATE GL
SET current_balance = current balance + amount,
SET period_balance = period_balance + amount
FROM Journal
WHERE (Journal.coa_no = GL.coa_no
AND Journal.period = GL.period
AND Journal.fiscal_yr = GL.fiscal_yr
AND posted_gl = “N”)

The entry using that method is now complete, and is by far one of the
simpler posting entries compared to the transactional requirements of
the other, more complex, Ledger entries (such as Accounts Receiv-
able, Accounts Payable, etc.) where many entries to multiple
accounts need to occur.

Contrast that with the abstract method offered through an ANF5 con-
struct:

The user makes the same entries as above through the GJ entry form,
but the GJ_Distribution table is eliminated and the distribution entries
Abstract Normalization : An Advanced Concept of Relational Theory 64

ANF5 - A Non-Virtual Projection from Multi-Table Joins

65
are actually made directly to the Journal table. Once the user is done
they save the record and that’s it. There is no transactional code
required. The entries now exist in the Journal table, and the projec-
tions for the aggregates in the GL are accomplished through the
ANF1 constructs mentioned above.

Further, ignoring standard accounting rules for a moment, because
the Period and Fiscal_Yr are part of the abstract join, after entry, the
user can go back to that record in the GJ table, change the Period and/
or Fiscal_Yr, and with no reconciling transaction code, all entries and
data are correct in both the Journal table, as well as the aggregates in
the GL table.

We are also saved the transactional code necessary to rebuild the
General Ledger and the Journal table in the event there is a system
malfunction. As long as the source tables are data-correct, then all
abstract projections are also correct.

Multiply these benefits across all journals in an accounting applica-
tion, as well as other similar constructs, and it isn’t difficult to see the
tremendous benefits gained in performance, code and table reduction,
code and table maintenance, and application flexibility.

As a final comment, in the actual accounting application, we’ve
added a Division and a Department to the General Ledger COA con-
struct, which gives us a DivNo/CoaNo/DeptNo (1112222222333) pri-
mary key. This allows for an expansion of the basic accounting
model, and for multiple Divisions to exist within the same applica-
tion. Each Division/Department combination can have its own Chart
of Accounts, as well as its own Inventory. Many accounting systems
don’t have the capacity to allow for both a Division and a Department
because those systems do not utilize abstracts, or they haven’t gone to
the coding expense of providing for a transactional means to achieve
a tertiary join between the Ledger tables, the Ledger distribution
tables, to the Journal table, and onto the GL table. By including the
Abstract Normalization : An Advanced Concept of Relational Theory

Division in the abstract, we can isolate a full set of GL Account num-
bers to a specific Division and still allow for Departments within that
Division. Admittedly, this serves as a secondary abstract layer for
enforcing Divisional data-correctness, and tends to complicate the
description of ANF5, but it serves our purpose because it also demon-
strates the simplicity and power of ANF5. It also demonstrates the
ability to combine abstracts in the same construct without conflict.

As you can hopefully now imagine, the possibilities are considerable.
Abstract Normalization : An Advanced Concept of Relational Theory 66

ANF5 - A Non-Virtual Projection from Multi-Table Joins

67
 Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 8 Case Study
In an effort to expound on the power and benefits of ANF theory, following is the
progression of design phases LedgerMaster underwent as it evolved from a stan-
dard (transactional) double-entry accounting construct, to its current abstract
design, which essentially reduces the entire accounting application to a few
highly active tables, and a number of ‘source’ tables, sans a great deal of transac-
tional code.The standard data-flow construct (not an ERD) for a double-entry
accounting application is as follows below. Please note that for simplification,
the naming convention we are using for the accounting “Ledgers” are...

AR = Accounts Receivable
 CM = Credit Memos
 CR = Cash Receipts (Receipts)

AP = Accounts Payable
DM = Debit Memos
CD = Cash Distributions (Payments)
GJ = General Journal
CB = Check Books
Abstract Normalization : An Advanced Concept of Relational Theory 68

Case Study

69
Standard Double-Entry Accounting Application Data-flow/Construct

AR

PK ar#

per
fyr
amt

CM

PK cm#

per
fyr
amt

CR

PK cr#

per
fyr
amt

AP

PK ap#

per
fyr
amt

DM

PK dm#

per
fyr
amt

CD

PK cd#

per
fyr
amt

CB

PK cb#

per
fyr
amt

GJ

PK gj#

per
fyr
amt

CMD

cm#
gl#
amt

CRD

cr#
gl#
amt

APD

ap#
gl#
amt

DMD

dm#
gl#
amt

CDD

cd#
gl#
amt

GJD

gj#
gl#
amt

CBD

cb#
gl#
amt

Journal

FK1 gl#
jn
jn#
per
fyr
amt

GL

PK gl#

per
fyr
ytd_bal
per_bal

Transactional Code

Transactional Code

ARD

ar#
gl#
amt

Distribution Tables

Ledger Tables
Abstract Normalization : An Advanced Concept of Relational Theory

Note: The ‘jn’ column in Journal represents the parent Ledger from
which the transaction originated. “AR” for the AR table, etc., which
allows us to perform ad-hoc joins for audit purposes, quick visual
interpretations, etc.

Process flow - The user enters journal information in the respective
ledger (AR, AP, etc.).

They then enter the distribution information in the corresponding dis-
tribution table (ARD, APD, etc.) through a master/detail construct.
This would be the GL account number (gl#) and amount to distribute
(amt), the total distributions of which must equal the ledger amount
in the master table.

When the entry is “posted”, the application will then transactionally
post those values into the Journal table, adding a journal reference
(jn) value as well as the journal number (jn#) which corresponds
directly with the originating Ledger table (ie - “AR”-00001, “AP”-
99999, etc.). At this point, once a period becomes ‘current’, those
entries in Journal corresponding with that period are then transaction-
ally aggregated into the General Ledger to obtain the YTD Balance
and Period Balance used in current period financials.

In most accounting applications, when a given period is closed, the
entries in the Journal are either deleted for that period, or archived to
another table (xJournal), and the aggregates from that period are
stored in yet another table (xGL). To simplify this study, we’ll forgo
some of the more extraneous issues, but note that there are peripheral
transactional requirements necessary to accommodate the standard
construct.

The problems with this standard design are many from a software
engineering perspective -
Abstract Normalization : An Advanced Concept of Relational Theory 70

Case Study

71
1. Redundant Tables - The distribution (ARD, APD, ...) tables are
redundant, not only to one another, but also to the Journal table since
they all contain essentially the same information. A variation on the
Non-First Normal Form construct mentioned earlier in this work.
This is not necessarily true for the Ledger tables though, since each
Ledger enforces a differing set of business rules specific to that led-
ger. However, in the last example in this chapter, we’ll see that there
are enough similarities even in the Ledger tables, that with the right
front-end, we can take this one final step as a further extension of
ANF5.

2. Transactional Overhead - This can be considerable, and significant.
So much so that in some systems, “posting” processes are relegated
to off-hours to avoid degradation to system performance for data-
entry personnel. Even limited transactional processing requirements
result in reduced productivity for personnel because of the wait time
incurred while waiting on system processes to complete.

3. Data-Integrity - In a file-server environment where no “roll-back”
capability exists, transaction processes can be interupted, resulting in
data-integrity problems in one or more tables because of partially
completed transactions. To overcome this in a transactional environ-
ment, additional code has to be written into posting procedures to
allow for a quasi-rollback capability, usually requiring additional
temp-tables, etc.

4. Data-Correctness - If modifications are desired to any of the ledger
information once the item has been posted, additional transactional
code has to be written and maintained to accomodate each of the
events desired (delete, update, etc). In other words, the application is
not ‘dynamic’, nor can data-correctness be enforced by using tools
available via the relational engine. Data-correctness has to be
enforced transactionally, either through triggers or stored procedures.
Abstract Normalization : An Advanced Concept of Relational Theory

By changing the relational paradigm to utilize abstract keys, we were able to mod-
ify the construct as per the minimal ERD that follows. The data-flow is still the
same, only the method differs.

Abstract Normal Distribution Tables - Double-Entry Accounting ERD

Ledger Tables

AR

PK jn#

jn
per
fyr
amt

CR

PK jn#

jn
per
fyr
amt

CM

PK jn#

jn
per
fyr
amt

AP

PK jn#

jn
per
fyr
amt

CD

PK jn#

jn
per
fyr
amt

DM

PK jn#

jn
per
fyr
amt

GJ

PK jn#

jn
per
fyr
amt

CB

PK jn#

jn
per
fyr
amt

GL

PK gl#

per
fyr
per_bal
ytd_bal

Journal

PK,FK1,FK2,FK3,FK4,FK5,FK6,FK7,FK8 jn#
PK,FK1,FK2,FK3,FK4,FK5,FK6,FK7,FK8 jn
PK,FK9,FK10,FK11 gl#

FK9 per
FK9,FK10 fyr

amt
Abstract Normalization : An Advanced Concept of Relational Theory 72

Case Study

73
This graphic shows the true ERD for the abstract design implemented
and working in several large installations, the largest being 125 con-
current users in a file/server environment. There are some consider-
ations here though where joins and performance are concerned. If the
back-end doesn’t allow for the creation of “compound, hashed” indi-
ces, then best optimization will require the use of manufactured
abstract keys. Assuming the later is the case, the following keys
would need to be created...

1. GL table - ytd_key = concat (gl#, fyr)
per_key = concat (gl#, fyr, per)

2. Journal - jn_key = concat (jn, jn#)
ytd_key = concat (gl#, fyr)
per_key = concat (gl#, fyr, per)

3. Ledgers - jn_key = concat (jn, jn#)

These are all defined as “hashed” index keys since they will always
be “exact match” joins. The joins then become as follows...

1. Ledger tables to Journal table join -

Ledger tables Journal
 jn_key = jn_key

2. GL table to Journal table joins -

GL Journal
 ytd_key = ytd_key

GL Journal
 per_key = per_key
Abstract Normalization : An Advanced Concept of Relational Theory

In the General Ledger, we are abstracting two data-sets. Year to Date
totals, and Period Totals. To accomplish that, we have to define keys
that identify those data-states in the source table (Journal) so that we
may aggregate those values in the GL. Hence, we define ytd_key and
per_key.

In Journal, we are also defining the journal data-state of each row by
combining the journal identifier (jn) with the journal reference num-
ber (jn#). Journal is the source table for both GL and the journal
tables because we aggregate in the GL and journal tables using Jour-
nal rows as our source of those aggregates to achieve ANF1 as well
as ANF5 constructs.

It’s important to note that when a period is closed, the Period and Fis-
cal Year values in the GL get modified, thereby changing the join to
the records in the Journal table to only those records that match the
new data-state, or rather, the new Period/Fiscal Year.

Note also that the GL table can now easily exist strictly as a View,
grouping on ‘source table’ joins to produce desired layouts, thereby
eliminating the need for yet another table (the GL table). To the user,
it won’t matter.

We’ve now resolved those problems associated with the standard
construct referred to in the first graphic above...

1. Redundant Distribution Tables - we’ve removed all the distribution
tables (ARD, APD, etc.) as well as their redundancy to the Journal
table. Not only does this save in transactional overhead between these
tables, it also eliminates the possiblity of data-correctness problems
between these tables since the distribution data now resides in only
one table (Journal).

2. Transactional Overhead - we’ve eliminated all the transaction
overhead associated with the previous construct. The only transaction
Abstract Normalization : An Advanced Concept of Relational Theory 74

Case Study

75
overhead remaining is to enforce the business rules specific to the
business for which the application is designed. Much of this also
depends on the feature-set of the front-end employeed in enforcing
those business rules as many can be enforced via application develop-
ment restrictions. We also have no need to relegate the transactional
processes to run in off-hours, because they no longer exist.

3. Data-Integrity - there are no data-integrity problems associated
with partially completed transactional code in either a file-server
environment, or in a client-server environment, due to system failures
or the inability to achieve true roll-back capability, because the distri-
bution data only exists in one table (Journal).

4. Data-Correctness - the data is always correct because there is no
room for data-redundancy to occur in the distribution tables any
longer. We’ve also removed the aggregation to the GL table via trans-
actional means, and resolved the aggregates by using either a view, or
within the reports themselves, making all aggregates dynamic (or
‘virtual’).

The overall benefit and effect is difficult to quantify until experi-
enced. Once setup, training, and customization is complete, Tech
Support calls are few, and are for the most part relegated to requests
for new features, even in a file-server environment.

Finally, assuming the front-end of choice gives us the tools necessary,
we can eliminate the remaining structural redundancy between the
ledger tables. Note that unlike the data-redundancy we had between
the previous two examples, this focus is solely on eliminating struc-
tural redundancy and allowing for a more efficient design. The bene-
fits are 1) simpler reporting constructs and 2) the ability to achieve
yet a higher level of normalization for the construct as a whole.

To get there, we have to take a couple of mental leaps. If we treat the
Ledger tables as ‘child’ tables....
Abstract Normalization : An Advanced Concept of Relational Theory

Ledger Tables as Child Tables

AR

PK jn#

jn
cust#
terms

CR

PK jn#

jn
cust#
ar_ref
method
pmt_ref
cust_chk#
dep#

CM

PK jn#

jn
cust#
ar_ref

AP

PK jn#

jn
vend#
vend_po#
exp_dt
due_dt
payee
terms
check#

CD

PK jn#

jn
check#
ap_ref
void

DM

PK jn#

jn
vend#
ap_ref

CB

PK jn#

jn
type
payee
returned
check#

Ledger

PK jn#
PK jn

per
fyr
jdate
posted
pdate
note1
cb#
amt

Journal

PK,FK1 jn#
PK,FK1 jn
PK,FK2,FK3,FK4 gl#

FK2 per
FK2,FK3 fyr

amt
Abstract Normalization : An Advanced Concept of Relational Theory 76

Case Study

77
...and relate these to a single Ledger table on ‘jn’ and ‘jn#’, thereby
treating the Ledger table as the ‘parent’ we can delete the redundant
columns that exist across all Ledger tables in the previous examples.
This possibility assumes that the user interface (front-end) allows for
the use of ‘child tables’ in it’s construct(s). Note that we’ve essen-
tially relegated the “GJ” table to the parent ‘Ledger’ table (as there
are only 7 child tables). When a user begins data-entry, the front-end
then forces them into a ‘type’ of ledger entry (AR, AP, etc), or the
user could just ‘choose’ the type of entry they wish to make. Once the
‘jn’ column has received an entry type (AP, AP, etc), it would ‘make
visible’ the appropriate child table and related columns for that entry,
and relegate the otherwise common data-entry columns to the Ledger
table, thereby simplifying reporting, transactions, etc. To the user,
there is little difference, though it does allow for more flexibility in
designing the UI for the developer.

From here, we can make the final leap and consolidate all redundant
columns across all the child tables into the Ledger table itself, and
enforce relational integrity through abstract self-referencing joins. In
so doing, we’ve now reduced the total construct from 18 tables to two
tables, a view (the GL), and relegated the seperation of the specific
ledger tables to the user interface as Forms. Again, the user notices
little, if any, difference. However, the size of the database is reduced
conserably, reporting is simpler, transactional code is almost non-
existant as compared to the original model, and performance benefits
accordingly.

In the following ERD, I’ve also included the source tables necessary
to support the transaction tables to further expound on the model.
Abstract Normalization : An Advanced Concept of Relational Theory

Ledger Table Abstraction to ANF5

Ledger

PK,FK10,FK12,FK13 jn
PK,FK13 jn#

rjn
rjn#
per
fyr
jdate
pdate
ddate

FK9 cid
FK10 term
FK11 cb#

chk#
FK12 type

ref
desc
amt
void

Journal

PK,FK1 jn#
PK,FK1 jn
PK,FK2,FK3,FK4,FK5 gl#

FK2 per
FK2,FK3 fyr

amt

JTypes

PK jn
PK type

Contacts

PK cid

company
name
address
city
st
zip

Checkbooks

PK cb#

bank
lst_chk#

Terms

PK jn
PK term

G/L
View

Source Tables

COA

PK gl#

desc
FK1 type
FK1 stype
FK2 cat

CTypes

PK type
PK stype

CCategories

PK cat

Ledger (jn, jn#) 1:1 Ledger (rjn, rjn#)
Abstract Normalization : An Advanced Concept of Relational Theory 78

Case Study

79
While this may appear confusing at first, know that the referential
model is still intact, and that we’ve used multiple layers of abstrac-
tion to achieve our end result. With that in mind, trace the above
models through this model, and it will become obvious that this is
indeed the case. We’ve simply removed all UI aspects from our back-
end data-store, and relegated those requirements to the front-end,
which will now overlay multiple ‘views’ (or rather, ‘forms’) over the
data-tables. To the user, again, there is little/no difference in what
they see, or how they interact with the application.
Abstract Normalization : An Advanced Concept of Relational Theory

CHAPTER 9 Data Normalization
Revisited
In discussing the subject and plans for this book with peers, it was
suggested that a brief review of data normalization would be in order,
if only for reference purposes. This is a reprint of an article I wrote
from a few years back, and is offered here as a review on the subject.

Assume we take on a project in which the following columns all exist
in a single "flat file" table. Our job is first and foremost to "normal-
ize" the data before we begin applying additional business rules.

The un-normalized data items on the inherited table are:

Car Serial Number
Car Year
Car Make
Car Model
Dealership Name
Dealership Location
Feature1 Name
Feature1 Description
Abstract Normalization : An Advanced Concept of Relational Theory 80

Data Normalization Revisited

81
Feature2 Name
Feature2 Description
Feature3 Name
Feature3 Description
Feature4 Name
Feature4 Description
Feature5 Name
Feature5 Description
Feature6 Name
Feature6 Description

1. Eliminate Repeating Groups

Our first goal is to create separate tables where each set of related
attributes can be defined as being owned by a separate primary key.

In this step, we are concerned with groups of information. By identi-
fying and moving these groups into separate, related tables, we
achieve "First Normal Form" (1NF). In the above table, a car may
have many additional features, or it may not have any. Additionally, if
we want to find out which Cars have a certain Feature associated with
it, the search is rather awkward and cumbersome since any one of the
Feature columns could contain the information we're looking for.
Ultimately, we end up paging through many records, or writing a
large "if-then" query. By achieving 1NF we can then simply search
against one column in the Features table, defined below, to identify
those Cars which match the criteria.
Abstract Normalization : An Advanced Concept of Relational Theory

FIRST NORMAL FORM

Cars table
Car Serial Number --Primary Key
Car Year
Car Make
Car Model
Dealership Name
Dealership Location

Features table
Feature Code--Primary Key
Feature Name
Feature Description

2. Eliminate Redundant Data

In the Cars table above, if you examine the data, you'll find repeating
values:

Car# Year Make Model
1234 1995 Chrysler Cirrus
1235 1995 Chrysler New Yorker
1236 1995 Chrysler Cirrus

Besides the repeating data in the Year and Make columns, notice also
the Model for Cars #1234 and #1236. We can eliminate this redun-
dancy by removing these attributes to a separate table.

To accomplish this, we divide the Cars table into two tables, Cars and
car models, and retain only those attributes specific to the "primary
Abstract Normalization : An Advanced Concept of Relational Theory 82

Data Normalization Revisited

83
key" in each, with the addition of "foreign keys" to achieve the rela-
tional structure:

Cars
Car Serial Number--Primary Key
Car Code --Foreign Key
Dealership Name
Dealership Location

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

We now have under the Car Models table:

Code Year Make Model
0001 1995 Chrysler Cirrus
0002 1995 Chrysler New Yorker

and in the Cars table:

Car# Code
1234 0001
1235 0002
1236 0001

A small example, but nevertheless, when applied to a large data set,
the results in both efficiency and size savings are significant.

We now have:
Abstract Normalization : An Advanced Concept of Relational Theory

SECOND NORMAL FORM

Cars
Car Number --Primary Key
Car Code --Foriegn Key
Dealership Name
Dealership Location

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Features
Feature Code --Primary Key
Car Number --Foriegn Key
Feature Name
Feature Description

3. Eliminate Columns Which Are not Dependent On The Pri-
mary Key.

Sometimes there is a vague distinction between 2NF and 3NF, in that
when 2NF is achieved, 3NF is also. Take the above for example,
Dealership Name and Dealership Location may or may not be data
that is redundant (in accordance with 2NF) in the Cars table. If it
were, in this case we would also achieve 3NF because in conforming
to 2NF we would also have created a separate table for Dealerships
based on "Data Redundancy". But for our purposes here, we'll
assume the data is not redundant.
Abstract Normalization : An Advanced Concept of Relational Theory 84

Data Normalization Revisited

85
To achieve 3NF under these circumstances however, we need to
examine the "dependency" of a column on the primary key of that
table. Dealership information is not dependent on the Car, as it can
and should exist as a separate data-set on it's own. Therefore, we
need to remove this information to a separate table as well. We now
have:

THIRD NORMAL FORM

Dealerships
Dealership Code --Primary Key
Dealership Name
Dealership Location

Cars
Car Serial Number --Primary Key
Car Code --Foreign Key
Dealership Code --Foreign Key

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Features
Feature Code --Primary Key
Car Serial Number --Foreign Key
Feature Name
Feature Description
Abstract Normalization : An Advanced Concept of Relational Theory

In achieving both 2NF and 3NF, our primary goal is to avoid update
and delete anomolies, which we have done here. Previously, had we
deleted a Car, the Dealership information would have been lost as
well. Now, we can delete either the Dealership information, or the
information pertaining to a Car, and the related data will be unaf-
fected unless we direct the database to perform otherwise.

Third Normal Form satisfies most business requirements. However, if
you wish to normalize further...

4. Isolate Independent Multiple Relationships

Tables may not contain two or more 1:N or N:M relationships that are
not directly related.

Now it gets a bit more abstract.

Suppose I want to add an Accessories column to Features, so for
example, a car could be red (Feature) and could come with pinstrip-
ing (Accessory). This violates 4NF in that these two attributes do not
share a meaningful relationship. A car may be red but not have pin-
striping, or it may be red and not come with chrome mMirrors. How-
ever we need a way to represent this without storing these values
within the same table.

Given a Features table:

Feature Code --PK
Car Serial Number --FK
Feature Name
Feature Description

where a Feature can come with various Accessories (e.g. pinstripes,
chrome mirrors), we could add another column so the table now has:
Abstract Normalization : An Advanced Concept of Relational Theory 86

Data Normalization Revisited

87
Features
Feature Code --PK
Car Serial Number --FK
Feature Name
Feature Description
Accessory

The problem is that more than one Accessory may be available per
Feature which means we would have to enter a record for every
Accessory desired and duplicate the other columns. Hence we have
an inherent multiple relationship between Features and Accessories.
To achieve 4nf we need to seperate the multiple relationship. To
accomplish this, we add another table Accessories.

Features
Feature Code --PK
Car Serial Number --FK
Feature Name
Feature Description

Accessories
Accessory Code --PK
Car Serial Number --FK
Accessory Description

The problem here is that it may need to be normalized to 5NF
because we now have 'semantically related multiple relationships'
(M:M) between Accessories, Features, and Cars. This requires add-
ing yet another table. Sticking to our example, an Accessory can
belong to many Features, and a Feature can have many Accessories.
The solution is to create an Accessory table (not related to Cars) and
Abstract Normalization : An Advanced Concept of Relational Theory

an associative table to enforce business rules tying Accessories to
Features:

Accessories
Accessory Code
Accessory Description

Features/Accessories
Feature Code
Accessory Code

Cars/Features
Car Code
Feature Code
Accessory Code

If properly constructed, from the Cars table, we can now select a Fea-
ture (in a Master/Detail construct), which will then determine which
Accessories are available for that Feature in the Cars_Features table:

Car
Feature Accessory
Feature Accessory
Feature Accessory

without having to actually type in a Feature Code and Description,
and an Accessory Code and Description for every incidence/combi-
nation.
Abstract Normalization : An Advanced Concept of Relational Theory 88

Data Normalization Revisited

89
FOURTH NORMAL FORM

Dealerships
Dealership Code --Primary Key
Dealership Name
Dealership Location

Cars
Car Serial Number --Primary Key
Car Code --Foreign Key
Dealership Code --Foreign Key

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Features
Feature Code --Primary Key
Car Serial Number --Foreign Key
Feature Name
Feature Description

Accessories
Accessory Code --Primary Key
Car Serial Number --Foreign Key
Accessory Description

5. Isolate Semantically Related Multiple Relationships

Now assume that our application will keep track of which Models are
available in each Dealership, and which Distributor supplies Cars to
Abstract Normalization : An Advanced Concept of Relational Theory

those Dealerships. This suggests a Distributor table which satisfies
4NF. Assume a law is now passed to prevent exclusive arrange-
ments; a Dealership selling any Model must offer that Model from all
Distributors it deals with.

In other words, if "NorthWest Auto" sells Cadillacs and wants to sell
any "National Distributor" cars, it must sell National Distributor
Cadillacs. Inserts and deletes create the need for 5NF under this sce-
nario . Suppose a Dealership decides to offer three new Models. Also
suppose that it deals with three Distributors that can supply those
models. This will require nine new rows in the database, one for each
Distributor/Model combination. Breaking up the table reduces the
number of inserts to six.

Without achieving 5NF:

Distributor Model
National Dist Cadillac
Regional Dist Cadillac
InterRegional Dist Cadillac
National Dist Scottsdale
Regional Dist Scottsdale
InterRegional Dist Scottsdale
National Dist Surburban
Regional Dist Surburban
InterRegional Dist Surburban

With 5NF:

Dealerships
Dealership Code --Primary Key
Dealership Name
Dealership Location
Abstract Normalization : An Advanced Concept of Relational Theory 90

Data Normalization Revisited

91
Distributors
Distributor Code --Primary Key
Distributor Name
Distributor Location
Dealership Code --Foreign Key

Dealerships_Distributors
Dealership Code --Primary Key (join)
Distributor Code --Primary Key

therefore:

Dealerships_Distributors

Dealership Distributor
Northwest Auto National Dist
EastWest Auto Regional Dist
Southwest Auto InterRegional Dist

Dealerships_Models

Dealership Model
Northwest Auto Cadillac
EastWest Auto Scottsdale
Southwest Auto Surburban

which gives us six entries in the database versus nine entries as per
above. (Obviously, we'd use Dealership Code, Distributor Code, and
Model Code in the actual application instead of the names)
Abstract Normalization : An Advanced Concept of Relational Theory

FIFTH NORMAL FORM

Dealerships
Dealership Code --Primary Key
Dealership Name
Dealership Location

Distributors
Distributor Code --Primary Key
Dealership Code --Foreign Key
Distributor Name
Distributor Location

Dealerships_Distributors
Dealership Code --Primary Key (join)
Distributor Code --Primary Key

Dealerships_Models
Dealership Code --Primary Key (join)
Car Code --Primary Key

Car Models
Car Code --Primary Key
Car Year
Car Make
Car Model

Cars
Car Number --Primary Key
Car Code --Foriegn Key
Dealership Code --Foreign Key
Abstract Normalization : An Advanced Concept of Relational Theory 92

Data Normalization Revisited

93
Features
Feature Code --Primary Key
Car Number --Foriegn Key
Feature Name
Feature Description

Accessories
Accessory Code --Primary Key
Car Serial Number --Foreign Key
Accessory Description

The ERD (Entity Relationship Diagram) would be as follows:

DISTRIBUTORS
 |
(1:M)
 |
DEALERSHIPS_DISTRIBUTORS
 |
(M:1)
 |
DEALERSHIPS --(1:M)--DEALERSHIPS_MODELS
 | (M:1 relationship to CAR MODELS)
(1:M)
 |
CARS -(1:M)- CAR FEATURES
 | -(1:M)- ACCESSORIES
(M:1)
 |
CAR MODELS

There are other aspects to normalization, but their application is a bit
more abstract. Essentially they involve the elimination of choice col-
umns (moving them to user modifiable lookup tables) and the elimi-
Abstract Normalization : An Advanced Concept of Relational Theory

nation of "hard coding" variables (data-dependant) within derivations
and procedures and moving those variable values to "Constants"
tables (data-independent). Both are subject to opinion as to whether
or not they can be classified as "Normalization" rules, but neverthe-
less are quite valid in their application. Last of all, there is the need to
maintain "atomic" data values in columns.
Abstract Normalization : An Advanced Concept of Relational Theory 94

Data Normalization Revisited

95
 Abstract Normalization : An Advanced Concept of Relational Theory

	CHAPTER 1 Introduction
	CHAPTER 2 Abstract Normal Form
	CHAPTER 3 ANF1 - Projection of a Single Subset
	CHAPTER 4 ANF2 - Projection of Multiple Subsets
	CHAPTER 5 ANF3 - Projection of Subsets from a Set
	CHAPTER 6 ANF4 - Projection of Subsets from a Subset
	CHAPTER 7 ANF5 - A Non-Virtual Projection from Multi- Table Joins
	CHAPTER 8 Case Study
	Standard Double-Entry Accounting Application Data-flow/Construct
	Abstract Normal Distribution Tables - Double-Entry Accounting ERD

	CHAPTER 9 Data Normalization Revisited

